Студенческая база – большой каталог выполненных заданий по разным темам

У нас есть всё

ПОИСКОВЫЕ МОДУЛИ



Воспользуйтесь поиском по дереву категорий


Список готовых решений
Артикул №1166889
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 07.06.2025)
1. Составить уравнения по законам Кирхгофа без расчёта.
2. Рассчитать токи в заданной схеме методом контурных токов.
3. Рассчитать токи в заданной схеме методом двух узлов, если цепь может быть преобразована до двухузловой (или методом узловых потенциалов, если не может быть преобразована). Для цепи, преобразованной для двухузловой, исчезнувшие токи найти через разность потенциалов бывших узлов.
4. Рассчитать неизвестный ток в одной из ветвей методом эквивалентного источника и сравнить с полученным ранее.
5. Составить уравнение баланса мощностей и проверить, выполняется ли баланс мощности для исходной и преобразованной цепи.
Вариант 1

1. Составить уравнения по законам Кирхгофа без расчёта.              <br />2.  Рассчитать токи в заданной схеме методом контурных токов.             <br />3.  Рассчитать токи в заданной схеме методом двух узлов, если цепь может быть преобразована до двухузловой (или методом узловых потенциалов, если не может быть преобразована). Для цепи, преобразованной для двухузловой, исчезнувшие токи найти через разность потенциалов бывших узлов.             <br />4.  Рассчитать неизвестный ток в одной из ветвей методом эквивалентного источника и сравнить с полученным ранее.             <br />5.  Составить уравнение баланса мощностей и проверить, выполняется ли баланс мощности для исходной и преобразованной цепи.  <br /><b>Вариант 1</b>
Поисковые тэги: Законы Кирхгофа, Метод контурных токов (МКТ), Метод эквивалентного генератора (МЭГ), Метод узловых потенциалов (напряжений; МУП)

Артикул №1166888
Технические дисциплины >
  Инженерная графика

(Добавлено: 07.06.2025)
Расчетно-графическое задание по дисциплине «Автоматизированное проектирование НТТМ»
С помощью средств автоматизированного проектирования создать чертежи де талей. Вариант выбирается по сумме двух последних цифр зачётной книжки.
РГЗ состоит:
1.чертёж формата не менее А3 содержит: три проекции исходной детали, 3Д модель и оформляется в соответствии с требования ЕСКД;
2. пояснительная записка содержит: краткое описание порядка построения чертежа детали и список используемой литературы.

<b>Расчетно-графическое задание  по дисциплине «Автоматизированное проектирование НТТМ»</b> <br />С помощью средств автоматизированного проектирования создать чертежи де талей. Вариант выбирается по сумме двух последних цифр зачётной книжки.   <br />РГЗ состоит:  <br />1.чертёж формата не менее А3 содержит: три проекции исходной детали, 3Д  модель   и оформляется в соответствии  с  требования ЕСКД;  <br />2. пояснительная записка содержит: краткое описание порядка построения чертежа детали и список используемой литературы.


Артикул №1166887
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ)

(Добавлено: 07.06.2025)
Определить указанное в таблице напряжение
Билет №5

Определить указанное в таблице напряжение <br /><b>Билет №5</b>


Артикул №1166886
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Динамика

(Добавлено: 07.06.2025)
Задача Д1
Автомобиль М массой m имея в точке А начальную скорость V0, движется по трассе АВС и мосту СД. Участки АВ и ВС наклонные.
На участке АВ на автомобиль действует постоянная сила трения Fтр, а также постоянная сила F. В точках В и С автомобиль не изменяет величину своей скорости. Мост образует дугу окружности радиуса R. Максимальный прогиб моста h.
Считая автомобиль материальной точкой, определить:
1. Скорости автомобиля в точках В,С трассы и точке К моста
2. Силу давления автомобиля на мост, когда он находится в точке К
3. Установить, находится или нет автомобиль в точке К в отрыве от моста.
Вариант 88

<b>Задача Д1</b> <br />Автомобиль М массой m имея в точке А начальную скорость V0, движется по трассе АВС и мосту СД. Участки АВ и ВС наклонные. <br />На участке АВ на автомобиль действует постоянная сила трения Fтр,  а также постоянная сила F. В точках В и С автомобиль не изменяет величину своей скорости. Мост образует дугу окружности радиуса R. Максимальный прогиб моста h. <br />Считая автомобиль материальной точкой, определить: <br />1. Скорости автомобиля в точках В,С трассы и точке К моста <br />2. Силу давления автомобиля на мост, когда он находится в точке К <br />3. Установить, находится или нет автомобиль в точке К в отрыве от моста.<br /><b>Вариант 88</b>


Артикул №1166885
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Динамика

(Добавлено: 07.06.2025)
Задача Д1
Груз D массой m=4.8кг, получив в точке А начальную скорость V0=10м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=10Н). и сила сопротивления среды R, зависящая от скорости v груза, R=0.2·V2 (направлена против движения).
В точке В груз, не меняя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действует переменная сила А, проекция которой на ось X: Fx =4cos(2t).
Считая груз материальной точкой и зная расстояние АВ=l=4м движения груза от точки А до точки В, найти закон движения груза на участке ВС, т.е. X=f(t), где X=ВD. Трением груза о трубу пренебречь.
Вариант 88

<b>Задача Д1</b> <br />Груз D массой m=4.8кг, получив в точке А начальную скорость V0=10м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=10Н). и сила сопротивления среды R, зависящая от скорости v груза, R=0.2·V<sup>2</sup>   (направлена против движения).   <br />В точке В груз, не меняя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действует переменная сила  А, проекция которой на ось X: Fx =4cos(2t). <br />Считая груз материальной точкой и зная расстояние АВ=l=4м  движения груза от точки А до точки В, найти закон движения груза на участке ВС, т.е. X=f(t), где X=ВD. Трением груза о трубу пренебречь.<br /><b>Вариант 88</b>


Артикул №1166884
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Схемотехника

(Добавлено: 07.06.2025)
Исследовать усилитель переменного тока с параметрами, заданными в табл. 1. (Курсовая работа)
Вариант 13

Исследовать усилитель переменного тока с параметрами, заданными в табл. 1. (Курсовая работа)<br /><b>Вариант 13</b>


Артикул №1166883
Технические дисциплины >
  Электроснабжение

(Добавлено: 07.06.2025)
Электроснабжение цеха металлоконструкций (Курсовая работа)
Электроснабжение цеха металлоконструкций (Курсовая работа)


Артикул №1166882
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Двигатели и генераторы (электрические машины) >
  Постоянного тока >
  Параллельного возбуждения

(Добавлено: 07.06.2025)
ИССЛЕДОВАНИЕ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА
По заданным характеристикам двигателя постоянного тока требуется:
1. Нарисовать электрическую схему включения ДПТ с параллельным возбуждением. Определить номинальный электромагнитный момент двигателя, номинальный ток якоря и ток в обмотке возбуждения.
2. Рассчитать и построить на одном графике естественные механическую n=f(M) и электромеханическую n=f(Iя) характеристики. Определить пусковой момент, пусковой ток и скорость холостого хода двигателя, а также рассчитать скорость вращения nD при моменте сопротивления MD = Mнk на валу двигателя.
3. Рассчитать и построить механические характеристики ДПТ при:
3.1 Якорном управлении (U` = U*q1);
3.2 Реостатном регулировании (Rя.доб = Rя*q2);
3.3 Полюсном управлении (Ф` = Ф*q1).
4. Рассчитать и построить естественные и искусственные характеристики n(M ) ДПТ при:
4.1 Генераторном торможении nт = nн*h1;
4.2 Динамическом торможении ( nт = nD ); 4.3 Противовключенииим (nт = nD)
При этом момент сопротивления на валу (тормозящий момент) Мт = -Мн•k
5. Сделать выводы.
Вариант 21.
Pн = 3600 Вт
Uн = 220 В
nн = 1500 об/мин
η = 0,85
Rя = 0,4 Ом
Rдоб.п = 0,3 Ом
Rвозб = 45 Ом
k = 0.5
q1 = 0.7
q2 = 2
h1 = 1.4
h2 = 0.45



Артикул №1166881
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Двигатели и генераторы (электрические машины) >
  Постоянного тока >
  Параллельного возбуждения

(Добавлено: 07.06.2025)
ИССЛЕДОВАНИЕ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА
По заданным характеристикам двигателя постоянного тока требуется:
1. Нарисовать электрическую схему включения ДПТ с параллельным возбуждением. Определить номинальный электромагнитный момент двигателя, номинальный ток якоря и ток в обмотке возбуждения.
2. Рассчитать и построить на одном графике естественные механическую n=f(M) и электромеханическую n=f(Iя) характеристики. Определить пусковой момент, пусковой ток и скорость холостого хода двигателя, а также рассчитать скорость вращения nD при моменте сопротивления MD = Mнk на валу двигателя.
3. Рассчитать и построить механические характеристики ДПТ при:
3.1 Якорном управлении (U` = U*q1);
3.2 Реостатном регулировании (Rя.доб = Rя*q2);
3.3 Полюсном управлении (Ф` = Ф*q1).
4. Рассчитать и построить естественные и искусственные характеристики n(M ) ДПТ при:
4.1 Генераторном торможении nт = nн*h1;
4.2 Динамическом торможении ( nт = nD ); 4.3 Противовключенииим (nт = nD)
При этом момент сопротивления на валу (тормозящий момент) Мт = -Мн•k
5. Сделать выводы.
Вариант 15.
Pн = 1300 Вт
Uн = 110 В
nн = 1500 об/мин
η = 0,75
Rя = 0,3 Ом
Rдоб.п = 0,3 Ом
Rвозб = 150 Ом
k = 0.6
q1 = 0.8
q2 = 2
h1 = 1.2
h2 = 0.3



Артикул №1166880
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Двигатели и генераторы (электрические машины) >
  Постоянного тока >
  Параллельного возбуждения

(Добавлено: 07.06.2025)
ИССЛЕДОВАНИЕ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА
По заданным характеристикам двигателя постоянного тока требуется:
1. Нарисовать электрическую схему включения ДПТ с параллельным возбуждением. Определить номинальный электромагнитный момент двигателя, номинальный ток якоря и ток в обмотке возбуждения.
2. Рассчитать и построить на одном графике естественные механическую n=f(M) и электромеханическую n=f(Iя) характеристики. Определить пусковой момент, пусковой ток и скорость холостого хода двигателя, а также рассчитать скорость вращения nD при моменте сопротивления MD = Mнk на валу двигателя.
3. Рассчитать и построить механические характеристики ДПТ при:
3.1 Якорном управлении (U` = U*q1);
3.2 Реостатном регулировании (Rя.доб = Rя*q2);
3.3 Полюсном управлении (Ф` = Ф*q1).
4. Рассчитать и построить естественные и искусственные характеристики n(M ) ДПТ при:
4.1 Генераторном торможении nт = nн*h1;
4.2 Динамическом торможении ( nт = nD ); 4.3 Противовключенииим (nт = nD)
При этом момент сопротивления на валу (тормозящий момент) Мт = -Мн•k
5. Сделать выводы.
Вариант 12.
Pн = 1800 Вт
Uн = 220 В
nн = 1200 об/мин
η = 0,75
Rя = 1,4 Ом
Rдоб.п = 1,5 Ом
Rвозб = 220 Ом
k = 0.3
q1 = 0.6
q2 = 5
h1 = 1.15
h2 = 0.5



Артикул №1166879
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Двигатели и генераторы (электрические машины) >
  Постоянного тока >
  Параллельного возбуждения

(Добавлено: 07.06.2025)
ИССЛЕДОВАНИЕ ДВИГАТЕЛЕЙ ПОСТОЯННОГО ТОКА
По заданным характеристикам двигателя постоянного тока требуется:
1. Нарисовать электрическую схему включения ДПТ с параллельным возбуждением. Определить номинальный электромагнитный момент двигателя, номинальный ток якоря и ток в обмотке возбуждения.
2. Рассчитать и построить на одном графике естественные механическую n=f(M) и электромеханическую n=f(Iя) характеристики. Определить пусковой момент, пусковой ток и скорость холостого хода двигателя, а также рассчитать скорость вращения nD при моменте сопротивления MD = Mнk на валу двигателя.
3. Рассчитать и построить механические характеристики ДПТ при:
3.1 Якорном управлении (U` = U*q1);
3.2 Реостатном регулировании (Rя.доб = Rя*q2);
3.3 Полюсном управлении (Ф` = Ф*q1).
4. Рассчитать и построить естественные и искусственные характеристики n(M ) ДПТ при:
4.1 Генераторном торможении nт = nн*h1;
4.2 Динамическом торможении ( nт = nD ); 4.3 Противовключенииим (nт = nD)
При этом момент сопротивления на валу (тормозящий момент) Мт = -Мн•k
5. Сделать выводы.
Вариант 10
Pн = 3600 Вт
Uн = 220 В
nн = 1400 об/мин
η = 0,8
Rя = 0,4 Ом
Rдоб.п = 0,2 Ом
Rвозб = 150 Ом
k = 0.6
q1 = 0.8
q2 = 2
h1 = 1.2
h2 = 0.3



Артикул №1166878
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи переменного синусоидального тока

(Добавлено: 06.06.2025)
Вариант №8
Дано: R1 = 20 [Ом], R2 = 20 [Ом]; C = 10-3 [Ф]
Рассчитать комплексную передаточную функцию W(jω)=U2(jω)/U1(jω). Построить АЧХ и ФЧХ комплексной передаточной функции

<b>Вариант №8</b><br />Дано: R1 = 20 [Ом], R2 = 20 [Ом]; C = 10<sup>-3</sup> [Ф] <br />Рассчитать комплексную передаточную функцию W(jω)=U2(jω)/U1(jω). Построить АЧХ и ФЧХ комплексной передаточной функции


Артикул №1166877
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи переменного синусоидального тока

(Добавлено: 06.06.2025)
Вариант №9
Определить ток I4 методами: Контурных токов, узловых потенциалов, эквивалентного генератора

<b>Вариант №9</b><br />Определить ток I4 методами: Контурных токов, узловых потенциалов, эквивалентного генератора
Поисковые тэги: Метод контурных токов (МКТ), Метод эквивалентного генератора (МЭГ), Метод узловых потенциалов (напряжений; МУП)

Артикул №1166876
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 06.06.2025)
Для электрической схемы, изображенной на рис. 1.1 – 1.50, по заданным в табл. 1.2 сопротивлением и ЭДС выполнить следующее:
1. Составить систему уравнений, необходимых для определения токов по первому и второму правилам Кирхгофа.
2. Найти и вычислить все токи, пользуясь методом контурных токов.
3. Проверить правильность решения, применив метод узлового напряжения. Предварительно упростить схему, заменив треугольник сопротивлений r4, r5 и r6 эквивалентной звездой. Начертить расчётную схему с эквивалентной звездой и показать на ней токи.
4. Определить ток в резисторе r6 методом эквивалентного генератора.
5. Определить показание вольтметра и составить баланс мощностей для заданной схемы.
6. Построить в масштабе потенциальную диаграмму для внешнего контура.
Вариант 49

Для электрической схемы, изображенной на рис. 1.1 – 1.50, по заданным в табл. 1.2 сопротивлением и ЭДС выполнить следующее: 	 <br />1.	Составить систему уравнений, необходимых для определения токов по первому и второму правилам Кирхгофа. <br />2.	Найти и вычислить все токи, пользуясь методом контурных токов. <br />3.	Проверить правильность решения, применив метод узлового напряжения. Предварительно упростить схему, заменив треугольник сопротивлений r4, r5 и r6 эквивалентной звездой. Начертить расчётную схему с эквивалентной звездой и показать на ней токи. <br />4.	Определить ток в резисторе r6 методом эквивалентного генератора. <br />5.	Определить показание вольтметра и составить баланс мощностей для заданной схемы. <br />6.	Построить в масштабе потенциальную диаграмму для внешнего контура.  <br /><b>Вариант 49</b>
Поисковые тэги: Законы Кирхгофа, Метод контурных токов (МКТ), Метод эквивалентного генератора (МЭГ), Баланс мощностей, Потенциальная диаграмма, Метод узловых потенциалов (напряжений; МУП)

Артикул №1166875
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи постоянного тока

(Добавлено: 06.06.2025)
Для электрической схемы, изображенной на рисунке, по заданным значениям сопротивлений и ЭДС:
1) Составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа;
2) Найти все токи, пользуясь методом контурных токов;
3) Для проверки правильности решения составить баланс мощностей.
Вариант 40
Дано: Е1 = 4 В, Е2 = 9 В, Е3 = 18 В,
R1 = 2.7 Ом, R2 = 10 Ом, R3 = 4 Ом, R4 = 8 Ом, R5 = 10 Ом, R6 = 2 Ом

Для электрической схемы, изображенной на рисунке, по заданным значениям сопротивлений и ЭДС: <br />1)	Составить систему уравнений, необходимых для определения токов по первому и второму законам Кирхгофа; <br />2)	Найти все токи, пользуясь методом контурных токов; <br />3)	Для проверки правильности решения составить баланс мощностей. <br /><b>Вариант 40</b> <br />Дано: Е1 = 4 В, Е2 = 9 В, Е3 = 18 В, <br />R1 = 2.7 Ом, R2 = 10 Ом, R3 = 4 Ом, R4 = 8 Ом, R5 = 10 Ом, R6 = 2 Ом
Поисковые тэги: Законы Кирхгофа, Метод контурных токов (МКТ), Баланс мощностей

Артикул №1166874
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Цепи переменного синусоидального тока

(Добавлено: 06.06.2025)
Задача 2. Для электрической цепи, схема которой изображена на рис. 2.1—2.50, по заданным в табл. 2 .параметрам и э. д. с. источника определить токи во всех ветвях цепи и напряжения на отдельных участках. Составить баланс активной и реактивной мощностей. Построить в масштабе на комплексной плоскости векторную диаграмму токов и потенциальную диаграмму напряжений по внешнему контуру. Определить показание вольтметра и активную мощность, измеряемую ваттметром
Вариант 44
Дано: E = 220 В, f = 50 Гц
C2 = 318 мкФ L1 = 9,55 мГн
R1 = 40 Ом, R2 = 10 Ом, R3 = 40 Ом

<b>Задача 2.</b> Для электрической цепи, схема которой изображена на рис. 2.1—2.50, по заданным в табл. 2 .параметрам и э. д. с. источника определить токи во всех ветвях цепи и напряжения на отдельных участках. Составить баланс активной и реактивной мощностей. Построить в масштабе на комплексной плоскости векторную диаграмму токов и потенциальную диаграмму напряжений по внешнему контуру. Определить показание вольтметра и активную мощность, измеряемую ваттметром <br /><b>Вариант 44</b> <br />  Дано: E = 220 В, f = 50 Гц <br />C2 = 318 мкФ L1 = 9,55 мГн <br />R1 = 40 Ом, R2 = 10 Ом, R3 = 40 Ом
Поисковые тэги: Баланс мощностей, Векторная (топографическая) диаграмма

Артикул №1166873
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  постоянный ток >
  второго рода

(Добавлено: 06.06.2025)
Расчет переходных процессов в линейных цепях с сосредоточенными параметрами
Для вариантов схем, имеющих параметры, указанные в таблице, выполнить следующие расчеты:
1. Определить в переходном режиме при включении рубильника 2, операторным методом токи i1(t), i2(t), i3(t) и напряжение на конденсаторе uC(t) учитывая, что рубильник 2 включается после рубильника 1, спустя время τ;
Вариант 568

<b>Расчет переходных процессов в линейных цепях с сосредоточенными параметрами </b><br />Для вариантов схем, имеющих параметры, указанные в таблице, выполнить следующие расчеты: <br />1. Определить в переходном режиме при включении рубильника 2, операторным методом токи i1(t), i2(t), i3(t) и напряжение на конденсаторе uC(t) учитывая, что рубильник 2 включается после рубильника 1, спустя время τ;<br /><b>Вариант 568</b>
Поисковые тэги: Операторный метод, Классический метод

Артикул №1166872
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Трехфазные цепи

(Добавлено: 06.06.2025)
Задача №1 Трехфазные цепи
Симметричный трехфазный генератор, обмотки которого соединены треугольником, питает равномерную нагрузку, соединенную треугольником
Требуется:
1. Рассчитать фазные токи нагрузки, линейные токи, напряжения на фазах нагрузки, активную мощность. Развиваемую генератором и потребляемую нагрузкой, КПД систему и начертить топографическую диаграмму, считая, что произошло короткое замыкание на активном сопротивлении фазы, указанной в таблице.
2. Найти аналитическим и графическим путем симметричные составляющие несимметричных линейных токов, полученных при расчёте по п. 1.
Вариант 568

<b>Задача №1 Трехфазные цепи </b><br />Симметричный трехфазный генератор, обмотки которого соединены треугольником, питает равномерную нагрузку, соединенную треугольником<br />Требуется: <br />1. Рассчитать фазные токи нагрузки, линейные токи, напряжения на фазах нагрузки, активную мощность. Развиваемую генератором и потребляемую нагрузкой, КПД систему и начертить топографическую диаграмму, считая, что произошло короткое замыкание на активном сопротивлении фазы, указанной в таблице. <br />2. Найти аналитическим и графическим путем симметричные составляющие несимметричных линейных токов, полученных при расчёте по п. 1.<br /><b>Вариант 568</b>
Поисковые тэги: Векторная (топографическая) диаграмма, Соединение "треугольник", Метод симметричных составляющих

Артикул №1166871
Технические дисциплины >
  Физика >
  Оптика

(Добавлено: 06.06.2025)
7.4.Луч света падает нормально (см.рис.1) на прямоугольную призму с преломляющим углом φ = 50° и показателем преломления n = 1,5.
1) Постройте ход луча в призме;
2) определите, под каким углом и через какую грань призмы свет из нее выходит.

<b>7.4.</b>Луч света падает нормально (см.рис.1) на прямоугольную призму с преломляющим углом φ = 50° и показателем преломления n = 1,5. <br />1) Постройте ход луча в призме; <br />2) определите, под каким углом и через какую грань призмы свет из нее выходит.


Артикул №1166870
Технические дисциплины >
  Физика >
  Квантовая физика

(Добавлено: 06.06.2025)
10. Уравнение Шредингера
Квантовая частица находится в бесконечно глубокой одномерной прямоугольной яме шириной l. Какова вероятность нахождения ее в заданной области пространства х для заданного энергетического состояния n. Постройте с соблюдением масштаба графики зависимости Ψ(x) и Ψ2(x).

<b>10. Уравнение Шредингера</b><br />Квантовая частица находится в бесконечно глубокой одномерной прямоугольной яме шириной l. Какова вероятность нахождения ее в заданной области пространства х для заданного энергетического состояния n. Постройте с соблюдением масштаба графики зависимости Ψ(x) и Ψ<sup>2</sup>(x).


    Категории

    Студенческая база

    Наш сайт представляет из себя огромную базу выполненных заданий по разым учебным темам - от широкораспространенных до экзотических. Мы стараемся сделать так, чтобы большиство учеников и студентов смогли найти у нас ответы и подсказки на интересующие их темы. Каждый день мы закачиваем несколько десятков, а иногда и сотни новых файлов, а общее количество решений в нашей базе превышает 200000 работ (далеко не все из них еще размещены на сайте, но мы ежедневно над этим работаем). И не забывайте, что в любой большой базе данных умение правильно искать информацию - залог успеха, поэтому обязательно прочитайте раздел «Как искать», что сильно повысит Ваши шансы при поиске нужного решения.

    Мы в социальных сетях:


    Договор оферты