Артикул №1163219
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 20.10.2023)
ОТЧЕТ по лабораторной работе №1 по дисциплине «Цифровая обработка сигналов»
Тема: Исследование характеристик сигналов во временной и частотной области
Цель работы - исследование свойств характеристик сигналов во временной и частотной областях при моделировании в среде пакета MATLAB.

<b>ОТЧЕТ по лабораторной работе №1 по дисциплине «Цифровая обработка сигналов»</b> <br />Тема: Исследование характеристик сигналов во временной и частотной области<br />Цель работы - исследование свойств характеристик сигналов во временной и частотной областях при моделировании в среде пакета MATLAB.


Артикул №1160915
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 18.02.2023)
Вариант 3
1. Определение периодических сигналов (формула) и непериодических (импульсных) сигналов. Основные параметры сигналов. Задайте сигнал: последовательность из 3 прямоугольных радиоимпульсов с гармоническим заполнением (модель – формула, рисунок). Особенности энергетических характеристик периодических сигналов.
2. Определение энергии, мгновенной и средней мощности сигнала (формулы). Эффективная длительность сигнала (определение, формула). Определить энергию сигнала при s0 = 2, t0 = 0,2, t1 = 0,6
3. Дайте определение спектра непериодического сигнала. Прямое и обратное преобразование Фурье. В чем особенности спектров вещественного (физического) и комплексного сигналов.
4. Постройте точный график сигнала s(t) = 3•sin(t/3 – π/10). Определите числовые параметры сигнала. Вычислите его спектр (формула, рисунок). Как изменится спектр сигнала, если сигнал будет ограничен временным окном длительностью τ = 60 (формула, рисунок). Векторное представление этого гармонического сигнала (рисунок)
5. Свойства преобразования Фурье. Спектр сигнала, сдвинутого во времени (теорема о сдвиге, доказать).
Дано: s(t) → S(ω)
Определить: S1(ω), если s(t-τ)
6. ЛЧМ-сигнал (формула, рисунок). Параметры ЛЧМ-сигнала. Как связаны мгновенная частота и полная фаза сигнала.

<b>Вариант 3</b><br />1. Определение периодических сигналов (формула) и непериодических (импульсных) сигналов. Основные параметры сигналов. Задайте сигнал: последовательность из 3 прямоугольных радиоимпульсов с гармоническим заполнением (модель – формула, рисунок). Особенности энергетических характеристик периодических сигналов.<br />2. Определение энергии, мгновенной и средней мощности сигнала (формулы). Эффективная длительность сигнала (определение, формула). Определить энергию сигнала при s0 = 2, t0 = 0,2, t1 = 0,6<br />3. Дайте определение спектра непериодического сигнала. Прямое и обратное преобразование Фурье. В чем особенности спектров вещественного (физического) и комплексного сигналов.<br />4. Постройте точный график сигнала s(t) = 3•sin(t/3 – π/10). Определите числовые параметры сигнала. Вычислите его спектр (формула, рисунок). Как изменится спектр сигнала, если сигнал будет ограничен временным окном длительностью τ = 60 (формула, рисунок). Векторное представление этого гармонического сигнала (рисунок)<br />5. Свойства преобразования Фурье. Спектр сигнала, сдвинутого во времени (теорема о сдвиге, доказать). <br />Дано: s(t) → S(ω) <br />Определить: S1(ω), если s(t-τ)<br />6. ЛЧМ-сигнал (формула, рисунок). Параметры ЛЧМ-сигнала. Как связаны мгновенная частота и полная фаза сигнала.
Поисковые тэги: Векторная (топографическая) диаграмма, Разложение в ряд Фурье

Артикул №1157637
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 01.04.2022)
БИЛЕТ 1
1. Преобразование сигналов в нелинейных электрических цепях: безынерционные нелинейные преобразования суммы нескольких гармонических сигналов.



Артикул №1156601
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 17.01.2022)
Сигналу s(t) соответствует спектральная плотность S(ω). Спектральная плотность производной сигнала равна:
Выберите один ответ:
а. jωS(ω)
b. S(ω)/jω
c. S(ω)·ejωt
d. jωS(ω)·ejωt



Артикул №1149893
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 15.03.2021)
Варианты к заданиям 2-5 первой части дисциплины «Теория электрической связи»
Сигналы, которые вам предстоит анализировать, описывается следующей функцией
f(t)={a1•(t+b1 ) при t∈[-b_1;0]
a2•(-t-b2) при t∈[0;b_2]
Необходимо
1. Построить сигналы графически
2. Для каждого из сигналов рассчитать коэффициенты ряда Фурье в тригонометрической форме и записать представление сигнала в виде такого ряда Фурье
3. Для каждого из сигналов рассчитать коэффициенты ряда Фурье в комплексной форме и записать представление сигнала в виде такого ряда Фурье
4. Для одного периода сигнала из файла вариантов получить функцию спектральной плотности данного сигнала и построить ее график (с применением предпочитаемого Вами математического пакета)
5. С помощью предпочитаемого Вами математического пакета для сигнала, указанного в файле вариантов, построить его спектры при различных значениях частоты дискретизации. Дискретизацию следует выполнять для 3, 5, 7 и 9 равноотстоящих во времени отсчетов. Причем первый и последний отсчет выполняются в моменты начала и окончания импульса.
6. Сформулировать вывод об особенностях спектра дискретизированного сигнала в сравнении с непрерывным.
7. Сформулировать вывод о том, как влияют изменения сигнала во временной области на спектральную картину.
Вариант 40

<b>Варианты к заданиям 2-5 первой части дисциплины «Теория электрической связи»</b><br />Сигналы, которые вам предстоит анализировать, описывается следующей функцией<br />  f(t)={a1•(t+b1 ) при t∈[-b_1;0]<br />a2•(-t-b2) при t∈[0;b_2]<br /> Необходимо <br />1. Построить сигналы графически<br />2. Для каждого из сигналов рассчитать коэффициенты ряда Фурье в тригонометрической форме и записать представление сигнала в виде такого ряда Фурье<br />3. Для каждого из сигналов рассчитать коэффициенты ряда Фурье в комплексной форме и записать представление сигнала в виде такого ряда Фурье<br />4. Для одного периода сигнала из файла вариантов получить функцию спектральной плотности данного сигнала и построить  ее график  (с применением предпочитаемого Вами математического  пакета)<br />5. С помощью предпочитаемого Вами математического пакета для сигнала, указанного в файле вариантов,  построить его спектры  при различных значениях частоты дискретизации. Дискретизацию следует выполнять для 3, 5, 7 и 9 равноотстоящих во времени отсчетов.  Причем первый и последний отсчет выполняются в моменты начала и окончания импульса.<br />6. Сформулировать вывод  об особенностях спектра дискретизированного сигнала в сравнении  с непрерывным.<br />7. Сформулировать вывод о том, как влияют изменения сигнала во временной области на спектральную картину. <br /><b> Вариант 40</b>
Поисковые тэги: Разложение в ряд Фурье

Артикул №1148849
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 19.10.2020)
Курсовой проект по дисциплине «Цифровые системы передачи»



Артикул №1148447
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 10.08.2020)
Пример 12.1.
Записать формулу для входного воздействия, график и спектр которого изображены на рис. 12.1.

	<b>Пример 12.1. 	</b><br />Записать формулу для входного воздействия, график и спектр которого изображены на рис. 12.1.


Артикул №1147119
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 15.07.2020)
Дискретная обработка сигналов и цифровая фильтрация
Курсовая работа по дисциплине «Радиотехнические цепи и сигналы»
Вариант 43

<b>Дискретная обработка сигналов и цифровая фильтрация</b>  <br /> Курсовая работа по дисциплине «Радиотехнические цепи и сигналы»<br /><b>Вариант 43</b>


Артикул №1145944
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 11.05.2020)
Нелинейное преобразование спектра сигнала
11.23(Р). Резонансный удвоитель частоты работает в критическом режиме , т.е. Амплитуда выходного напряжения Umвых равна напряжению источника питания Е пит. Найдите зависимость КПД удвоителя от величины угла отсечки тока при постоянной амплитуде входного сигнала Umвх.



Артикул №1145942
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 11.05.2020)
Нелинейное преобразование спектра сигнала
11.17 (УО) Применительно к условиям задачи 11.16. постройте график зависимости коэффициента нелинейных искажений Кл от амплитуд Um входного сигнала, изменяющейся в пределах от 0 до 250 мВ. Напряжение смещения U0 = -1B.



Артикул №1145941
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 11.05.2020)
Нелинейное преобразование спектра сигнала
11.16. Полевой транзистор КП303Е, проходная характеристика которого аппроксимирована полиномом второй степени (а0 = 1 мА, а1 = 2 мА/В, а2 = 2 мА/В2), применен в однокаскадном усилителе напряжения с резистивной нагрузкой. На вход усилителя подана сумма гармонического сигнала uс (t) = 0.25 cos ωt (В) и постоянного смещения U0 = -1B.
Найти амплитуду второй гармоники напряжения на выходе усилителя, если Rн = 5.1 кОм.

<b>  Нелинейное преобразование спектра сигнала </b><br /> 11.16. Полевой транзистор КП303Е, проходная характеристика которого аппроксимирована полиномом второй степени (а<sub>0</sub> = 1 мА, а<sub>1</sub> = 2 мА/В, а<sub>2</sub> = 2 мА/В<sup>2</sup>), применен в однокаскадном усилителе напряжения с резистивной нагрузкой. На вход усилителя подана сумма гармонического сигнала u<sub>с</sub> (t) = 0.25 cos ωt (В) и постоянного смещения U<sub>0</sub> = -1B. <br />Найти амплитуду второй гармоники напряжения на выходе усилителя, если R<sub>н</sub> = 5.1 кОм.


Артикул №1145940
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 11.05.2020)
Нелинейное преобразование спектра сигнала
11.15 (УР). В ряде случаев, например для описания свойств мощных трансформаторов, оказывается удобной так называемая кусочно-параболическая аппроксимация ВАХ (см.рис.ниже):
где В-численный параметр (А/В²), находимый экспериментально. Выведите формулы для расчета амплитуд гармонических составляющих тока, возникающего под действием напряжения u=U0+Umcos ωt.

<b>  Нелинейное преобразование спектра сигнала </b><br />  11.15 (УР). В ряде случаев, например для описания свойств мощных трансформаторов, оказывается удобной так называемая кусочно-параболическая аппроксимация ВАХ (см.рис.ниже): <br /> где В-численный параметр (А/В²), находимый экспериментально. Выведите формулы для расчета амплитуд гармонических составляющих тока, возникающего под действием напряжения u=U0+Umcos ωt.


Артикул №1145939
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 11.05.2020)
Нелинейное преобразование спектра сигнала
11.14(О). Найдите постоянную составляющую I0 и амплитуду первой гармоники тока I1 в нелинейном элементе, рассмотренном в задаче 11.13, при следующих данных:
Um=1.5 B, U0=0.1 B, U m1=0.7 B, Um2=1.2 B, S=6 mA /B



Артикул №1145938
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 11.05.2020)
Нелинейное преобразование спектра сигнала
11.13(Р). Нелинейный резистор имеет ВАХ вида (см. рисунок).
К зажимам резистора приложено напряжение u=U0+Um cos ωt.
Получите формулы для расчета спектрального состава тока.

<b>  Нелинейное преобразование спектра сигнала </b><br />           11.13(Р). Нелинейный резистор имеет ВАХ вида     (см. рисунок).<br /> К зажимам резистора приложено напряжение u=U0+Um cos ωt. <br />Получите формулы для расчета спектрального состава тока.


Артикул №1145937
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 11.05.2020)
Нелинейное преобразование спектра сигнала
11.12(УО). К промежутку база-эмиттер транзистора КТ803А подключен источник напряжения (В) Uбэ=0,6+0,5cosω0t.Входная характеристика IB=f(Uбэ) допускает кусочно-линейную аппроксимацию с параметрами: S=0.66A/B, Um=0.7B. Определите входное сопротивление цепи Rн по первой гармонике.

<b>  Нелинейное преобразование спектра сигнала </b><br />  11.12(УО). К промежутку база-эмиттер транзистора КТ803А подключен источник напряжения (В) Uбэ=0,6+0,5cosω0t.Входная характеристика IB=f(Uбэ) допускает кусочно-линейную аппроксимацию с параметрами:  S=0.66A/B, Um=0.7B. Определите входное сопротивление цепи Rн по первой гармонике.


Артикул №1145936
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 11.05.2020)
Нелинейное преобразование спектра сигнала
11.11(УО). Входная характеристика биполярного транзистора КТ805, т.е. зависимость iб=f(uбэ), аппроксимация зависимостью (мА),
iб={0, uбэ<0.6B;
10( uбэ- 0.6), uбэ>=0.6B}
К промежутку база-эмиттер приложено напряжение (В) uбэ=0,4+0,75cosωt.Определите мощность Pб, выделяемую в цепи базы.



Артикул №1145935
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 11.05.2020)
Нелинейное преобразование спектра сигнала
11.10(O). В одноступенчатом усилителе напряжения (рис.1.11.3) использован полевой транзистор КПЗОЗЕ.К промежутку затвор-исток приложено напряжение (В) Uбэ=-1+0.5cosωt.Используя коэффициенты аппроксимации,полученные в задаче 11.1, определите постоянную составляющую Ic0 тока в стоковой цепи. Влияние переменного напряжения на стоке считайте пренебрежимо малым.

<b>  Нелинейное преобразование спектра сигнала </b><br />  11.10(O). В одноступенчатом усилителе напряжения (рис.1.11.3) использован полевой транзистор КПЗОЗЕ.К промежутку затвор-исток приложено напряжение (В) Uбэ=-1+0.5cosωt.Используя коэффициенты аппроксимации,полученные в задаче 11.1, определите постоянную составляющую Ic0 тока в стоковой цепи. Влияние переменного напряжения на стоке считайте пренебрежимо малым.


Артикул №1145934
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 11.05.2020)
Нелинейное преобразование спектра сигнала
11.9(Р). Ко входу усилителя, транзистор которого имеет ВАХ, заданную в условиях задачи 11.8
ik=15+40(Uбэ-1.2)+6.5(Uбэ-1.2)2+2.5(u-1.2)3.
приложено напряжение (В)Uбэ= 0.9+0.75cosωt. Определите постоянную составляющую коллекторного тока i0.



Артикул №1145933
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 10.05.2020)
Нелинейное преобразование спектра сигнала
11.8(O)Проходная характеристика (мА) биполярного транзистора iк=f(Uбэ )в окресности рабочей точки U0 = 1.2В задана многочленом
ik=15+40(Uбэ-1.2)+6.5(Uбэ-1.2)2+2.5(u-1.2)3.
Найдите выражение колебательной характеристики i1=F(Um),полагая ,что к базе транзистора приложено напряжение (В)Uбэ=1.2+Umcosωt.



Артикул №1145932
Технические дисциплины >
  Электроника (в т.ч. микроэлектроника и схемотехника) >
  Цифровая обработка сигналов (ЦОС) - Теория передачи сигналов

(Добавлено: 10.05.2020)
Нелинейное преобразование спектра сигнала
11.7.(О). К нелинейному резистору с ВАХ вида
i(u)=15+0.8(u-2.5)+0.16)(u-2.5) 2+0.07(u-2.5)3
(ток измеряется в миллиамперах ,а напряжение в вольтах)
приложено напряжение u=2.5+0.6cos ωt. Найдите амплитуды гармонических составляющих тока I0 ,I1,I2,I3.



    Категории
    Заказ решения задач по ТОЭ и ОТЦ
    Заказ решения задач по Теоретической механике

    Студенческая база

    Наш сайт представляет из себя огромную базу выполненных заданий по разым учебным темам - от широкораспространенных до экзотических. Мы стараемся сделать так, чтобы большиство учеников и студентов смогли найти у нас ответы и подсказки на интересующие их темы. Каждый день мы закачиваем несколько десятков, а иногда и сотни новых файлов, а общее количество решений в нашей базе превышает 200000 работ (далеко не все из них еще размещены на сайте, но мы ежедневно над этим работаем). И не забывайте, что в любой большой базе данных умение правильно искать информацию - залог успеха, поэтому обязательно прочитайте раздел «Как искать», что сильно повысит Ваши шансы при поиске нужного решения.

    Мы в социальных сетях:


    Договор оферты