Артикул №1163362
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 29.11.2023)
Лабораторная работа 1.
Глава 2. Запас энергии в электромеханических системах
Вариант А1

<b>Лабораторная работа 1.</b> <br />Глава 2. Запас энергии в электромеханических системах<br /> <b>Вариант А1</b>


Артикул №1163335
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 21.11.2023)
Вариант 15
Начертить эквивалентную схему. Рассчитать магнитные потоки и МДС катушки, если магнитная индукция в первом стержне B1=0,5 Тл.

<b>Вариант 15</b><br />Начертить эквивалентную схему. Рассчитать магнитные потоки и МДС катушки, если магнитная индукция в первом стержне B1=0,5 Тл.


Артикул №1163288
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 03.11.2023)
Обмотка со стальным сердечником имеет 150 витков; сечение S= 4•10-4 м2; общий воздушный зазор δ = 0.2 мм; длина средней индукционной линии l = 80 см.
Определить Bmax; величину тока в катушке при U = 220 В, f = 50 Гц, если μa0·μг=1000



Артикул №1163172
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 17.10.2023)
В задаче предлагается рассчитать индукцию магнитного поля в катушке, включенной в сеть переменного тока частотой 50 Гц, с длиной активной части проводника 10 м. Катушка вращается в электромагнитном поле с линейной скоростью 25 м/с, при этом индуцируется ЭДС 200 В за промежуток времени 0,287 с.
Примечание: при решении задачи использовать формулу (3.1), а также ω = 2πꬵ.



Артикул №1163069
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 10.10.2023)
Расчетно-графическая работа №6
«Магнитные цепи. Расчет электромагнита»
1.1 Исходные данные
1.1.1 Геометрические размеры (таблица 1).
1.1.2 Рисунок магнитной цепи (МЦ) (таблица 2).
1.1.3 Материалы МЦ (кривые намагничивания рисунок 1.1).
1.1.4 Магнитная индукция на одном из участков МЦ (таблица 1).
1.1.5 Напряжение питания U, В (таблица 1).
1.1.6 Допустимая плотность тока δ=4/мм2 (таблица 1).
1.1.7 Удельное сопротивление материала обмотки 0,017 Ом⋅мм2 /м.

1.2 Прямая задача
Требуется найти
1.2.1 Магнитодвижущую (намагничивающую) силу (МДС) Iw.
1.2.2 Число витков обмотки w.
1.2.3 Абсолютную магнитную проницаемость участков МЦ µai.
1.2.4 Магнитные сопротивления участков МЦ Rмi и МЦ в целом Rм.
1.2.5 Индуктивность обмотки L.
1.2.6 Энергию магнитного поля WM.
1.2.7 Электромагнитную силу (тяговое усилие электромагнита) FM.
1.2.8 Длину и диаметр провода обмотки lпр и dпр.
1.2.9 Сопротивление обмотки активное R.
1.2.10 Ток, потребляемый электромагнитом I.

1.3 Обратная задача
1.3.1 Построить тяговую характеристику электромагнита Fм=fFM(g) и зависимость индуктивности от величины зазора L=fL(g) по трем точкам (g/4, g/2,g), считая неизменной намагничивающую силу Iw, полученную в прямой задаче .
Вариант 41 (Схема 2В)

<b>Расчетно-графическая работа №6</b> <br />«Магнитные цепи. Расчет электромагнита»<br /><b>1.1 Исходные данные</b><br /> 1.1.1 Геометрические размеры (таблица 1).  <br />1.1.2 Рисунок магнитной цепи (МЦ) (таблица 2).  <br />1.1.3 Материалы МЦ (кривые намагничивания рисунок 1.1).  <br />1.1.4 Магнитная индукция на одном из участков МЦ (таблица 1).  <br />1.1.5 Напряжение питания U, В (таблица 1).  <br />1.1.6 Допустимая плотность тока δ=4/мм<sup>2</sup> (таблица 1).  <br />1.1.7 Удельное сопротивление материала обмотки 0,017 Ом⋅мм<sup>2</sup> /м.  <br /><br /><b>1.2 Прямая задача</b> <br />Требуется найти <br />1.2.1 Магнитодвижущую (намагничивающую) силу (МДС) Iw.  <br />1.2.2 Число витков обмотки w.  <br />1.2.3 Абсолютную магнитную проницаемость участков МЦ µai.  <br />1.2.4 Магнитные сопротивления участков МЦ Rмi и МЦ в целом Rм.  <br />1.2.5 Индуктивность обмотки L.  <br />1.2.6 Энергию магнитного поля WM.  <br />1.2.7 Электромагнитную силу (тяговое усилие электромагнита) FM.  <br />1.2.8 Длину и диаметр провода обмотки lпр и dпр.  <br />1.2.9 Сопротивление обмотки активное R.  <br />1.2.10 Ток, потребляемый электромагнитом I. <br /><br /><b>1.3 Обратная задача </b><br />1.3.1 Построить тяговую характеристику электромагнита Fм=f<sub>FM</sub>(g) и зависимость индуктивности от величины зазора L=f<sub>L</sub>(g) по трем точкам (g/4, g/2,g), считая неизменной намагничивающую силу Iw, полученную в прямой задаче .<br /> <b>Вариант 41 (Схема 2В)</b>


Артикул №1162992
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 01.10.2023)
Закон Ома для магнитной цепи
Выберите один ответ

Закон Ома для магнитной цепи<br />Выберите один ответ


Артикул №1162991
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 01.10.2023)
Магнитодвижущую силу (МДС) вдоль магнитной цепи можно представить в виде...
Магнитодвижущую силу (МДС) вдоль магнитной цепи можно представить в виде...


Артикул №1162739
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 12.09.2023)
Расчетно-графическая работа №6
«Магнитные цепи. Расчет электромагнита»
1.1 Исходные данные
1.1.1 Геометрические размеры (таблица 1).
1.1.2 Рисунок магнитной цепи (МЦ) (таблица 2).
1.1.3 Материалы МЦ (кривые намагничивания рисунок 1.1).
1.1.4 Магнитная индукция на одном из участков МЦ (таблица 1).
1.1.5 Напряжение питания U, В (таблица 1).
1.1.6 Допустимая плотность тока δ=4/мм2 (таблица 1).
1.1.7 Удельное сопротивление материала обмотки 0,017 Ом⋅мм2 /м.

1.2 Прямая задача
Требуется найти
1.2.1 Магнитодвижущую (намагничивающую) силу (МДС) Iw.
1.2.2 Число витков обмотки w.
1.2.3 Абсолютную магнитную проницаемость участков МЦ µai.
1.2.4 Магнитные сопротивления участков МЦ Rмi и МЦ в целом Rм.
1.2.5 Индуктивность обмотки L.
1.2.6 Энергию магнитного поля WM.
1.2.7 Электромагнитную силу (тяговое усилие электромагнита) FM.
1.2.8 Длину и диаметр провода обмотки lпр и dпр.
1.2.9 Сопротивление обмотки активное R.
1.2.10 Ток, потребляемый электромагнитом I.

1.3 Обратная задача
1.3.1 Построить тяговую характеристику электромагнита Fм=fFM(g) и зависимость индуктивности от величины зазора L=fL(g) по трем точкам (g/4, g/2,g), считая неизменной намагничивающую силу Iw, полученную в прямой задаче .
Вариант 58

<b>Расчетно-графическая работа №6</b> <br />«Магнитные цепи. Расчет электромагнита»<br /><b>1.1 Исходные данные</b><br /> 1.1.1 Геометрические размеры (таблица 1).  <br />1.1.2 Рисунок магнитной цепи (МЦ) (таблица 2).  <br />1.1.3 Материалы МЦ (кривые намагничивания рисунок 1.1).  <br />1.1.4 Магнитная индукция на одном из участков МЦ (таблица 1).  <br />1.1.5 Напряжение питания U, В (таблица 1).  <br />1.1.6 Допустимая плотность тока δ=4/мм<sup>2</sup> (таблица 1).  <br />1.1.7 Удельное сопротивление материала обмотки 0,017 Ом⋅мм<sup>2</sup> /м.  <br /><br /><b>1.2 Прямая задача</b> <br />Требуется найти <br />1.2.1 Магнитодвижущую (намагничивающую) силу (МДС) Iw.  <br />1.2.2 Число витков обмотки w.  <br />1.2.3 Абсолютную магнитную проницаемость участков МЦ µai.  <br />1.2.4 Магнитные сопротивления участков МЦ Rмi и МЦ в целом Rм.  <br />1.2.5 Индуктивность обмотки L.  <br />1.2.6 Энергию магнитного поля WM.  <br />1.2.7 Электромагнитную силу (тяговое усилие электромагнита) FM.  <br />1.2.8 Длину и диаметр провода обмотки lпр и dпр.  <br />1.2.9 Сопротивление обмотки активное R.  <br />1.2.10 Ток, потребляемый электромагнитом I. <br /><br /><b>1.3 Обратная задача </b><br />1.3.1 Построить тяговую характеристику электромагнита Fм=f<sub>FM</sub>(g) и зависимость индуктивности от величины зазора L=f<sub>L</sub>(g) по трем точкам (g/4, g/2,g), считая неизменной намагничивающую силу Iw, полученную в прямой задаче .<br /> <b>Вариант 58</b>


Артикул №1162676
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 04.09.2023)
В стальном магнитопроводе (Lс = 0,08 м) магнитная индукция B = 1,4 Тл. Какой зазор нужно сделать в магнитопроводе при неизменном токе, чтобы индукция уменьшилась вдвое?
В стальном магнитопроводе (Lс = 0,08 м) магнитная индукция B = 1,4 Тл. Какой зазор нужно сделать в магнитопроводе при неизменном токе, чтобы индукция уменьшилась вдвое?


Артикул №1162673
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 04.09.2023)
Обратная задача расчета неразветвленной магнитной цепи. Приведите на примере алгоритм расчета.


Артикул №1162531
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 20.08.2023)
Задача 2.
На стальной сердечник намотаны две катушки с числом витков W1 = 200 и W2 = 500 и током I2 = 1 A, воздушный зазор δ = 0,2 мм, lср = 50 см.
Найти ток I1, который создал магнитную индукцию в сердечнике B = 1,1 Тл.

<b>Задача 2. </b><br />На стальной сердечник намотаны две катушки с числом витков W1 = 200 и W2 = 500 и током I2 = 1 A, воздушный зазор δ = 0,2 мм, lср = 50 см. <br />Найти ток I1, который создал магнитную индукцию в сердечнике B = 1,1 Тл.


Артикул №1162438
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 14.08.2023)
Катушка с магнитопроводом подключена к источнику синусоидального напряжения. Показание вольтметра 133.2 В, частота f = 50 Гц. Средняя длина магнитопровода lст = 100 см, площадь поперечного сечения S = 100 см2, число витков обмотки w = 100. Пренебрегая гистерезисом, рассеянием, активным сопротивлением обмотки, используя расчет по действующим значениям, определить показание амперметра. Зависимость амплитуды индукции в магнитопроводе от амплитуды напряженности магнитного поля Bm(Hm) задана
Катушка с магнитопроводом подключена к источнику синусоидального напряжения. Показание вольтметра 133.2 В, частота f = 50 Гц. Средняя длина магнитопровода lст = 100 см, площадь поперечного сечения S = 100 см<sup>2</sup>, число витков обмотки w = 100. Пренебрегая гистерезисом, рассеянием, активным сопротивлением обмотки, используя расчет по действующим значениям, определить показание амперметра. Зависимость амплитуды индукции в магнитопроводе от амплитуды напряженности магнитного поля Bm(Hm) задана


Артикул №1162437
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 14.08.2023)
На стальной магнитопровод, средняя длина которого l = 120 см, намотаны две обмотки: w1 = 100 витков и w2 = 500 витков. Известен ток второй обмотки I2 = 2 А и кривая намагничивания материала магнитопровода. Пренебрегая рассеянием, определить ток первой обмотки, который обеспечил бы в магнитопроводе индукцию B = 1.2 Тл.
На стальной магнитопровод, средняя длина которого l = 120 см, намотаны две обмотки: w1 = 100 витков и w2 = 500 витков. Известен ток второй обмотки I2 = 2 А и кривая намагничивания материала магнитопровода. Пренебрегая рассеянием, определить ток первой обмотки, который обеспечил бы в магнитопроводе индукцию B = 1.2 Тл.


Артикул №1162344
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 09.08.2023)
Задача 2
По данным из таблицы 1 при отсутствии в магнитной системе ветви 3 (т.е. для одноконтурной магнитной системы, изображенной на рисунке) рассчитать ток, необходимый для получения в воздушном зазоре индукции B = 0,3 Тл.
Вариант 17

<b>Задача 2 </b> <br />По данным из таблицы 1 при отсутствии в магнитной системе ветви 3 (т.е. для одноконтурной магнитной системы, изображенной на рисунке) рассчитать ток, необходимый для получения в воздушном зазоре индукции B = 0,3 Тл.    <br /><b>Вариант 17</b>


Артикул №1162343
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 09.08.2023)
Задача 1
Кривые намагничивания электротехнических сталей 3413, 1413, 1213, 1513 приведены на рисунках
Магнитная цепь представлена на следующем рисунке
Длины средних линий первой, второй и третьей ветвей (L1, L2 и L3), а также длина воздушного зазора δ даны в мм, площади поперечного сечения всех ветвей одинаковы и равны S (задана в см2), токи I1, I2 заданы в амперах, W1, W2 – число витков. Найти индукцию B в воздушном зазоре. Исходные данные задачи приведены в таблице 1. Полями рассеивания можно пренебречь.
Вариант 17

<b>Задача 1</b>  <br />Кривые намагничивания электротехнических сталей 3413, 1413, 1213, 1513 приведены на рисунках<br />Магнитная цепь представлена на следующем рисунке<br />Длины средних линий первой, второй и третьей ветвей (L1, L2 и L3), а также длина воздушного зазора δ даны в мм, площади поперечного сечения всех ветвей одинаковы и равны S (задана в см2), токи I1, I2 заданы в амперах, W1, W2 – число витков. Найти индукцию B в воздушном зазоре. Исходные данные задачи приведены в таблице 1. Полями рассеивания можно пренебречь. <br /><b>Вариант 17</b>


Артикул №1162330
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 09.08.2023)
Задача 4.1. Расчет нелинейной магнитной цепи.
По данным, выполнить следующее:
1. Рассчитать магнитную цепь методом двух узлов и определить величины Ф3, Ф2
2. Для принятых в п.1 положительных направлений магнитных потоков и заданного направления МДС составить систему уравнений по законам Кирхгофа.
Схематическое изображение магнитопровода с размещением намагничивающих катушек, способа их намотки на сердечник и положительных направлений токов в них приведены на рисунке.
Приняты следующие обозначения: l – длина средней магнитной линии одной ветви магнитной цепи; lδ - длина воздушного зазора (его положение в магнитной цепи дано на схемах магнитопроводов); S – сечение участков магнитопровода; w – число витков катушек; I – постоянный ток в катушке.
Обозначения величин даются с индексами, которые указывают, к какой ветви магнитной цепи относится та или иная величина; индекс 1 – к левой магнитной ветви, 2 – к средней ветви, 3 – к правой ветви.
Магнитные свойства стали, из которой изготовлены магнитопроводы, определяются кривой намагничивания:
Вариант 1

<b>Задача 4.1. Расчет нелинейной магнитной цепи.</b><br /> По данным, выполнить следующее: <br />1. Рассчитать магнитную цепь методом двух узлов и определить величины Ф3, Ф2 <br />2. Для принятых в п.1 положительных направлений магнитных потоков и заданного  направления МДС составить систему уравнений по законам Кирхгофа. <br />Схематическое изображение магнитопровода с размещением намагничивающих катушек,  способа их намотки на сердечник и положительных направлений токов в них приведены на  рисунке.  <br />Приняты следующие обозначения: l – длина средней магнитной линии одной ветви  магнитной цепи;  lδ - длина воздушного зазора (его положение в магнитной цепи дано на  схемах магнитопроводов); S – сечение участков магнитопровода; w – число витков катушек; I – постоянный ток в катушке. <br />Обозначения величин даются с индексами, которые указывают, к какой ветви магнитной  цепи относится та или иная величина; индекс 1 – к левой магнитной ветви, 2 – к средней  ветви, 3 – к правой ветви. <br />Магнитные свойства стали, из которой изготовлены магнитопроводы, определяются  кривой намагничивания:<br /> <b>Вариант 1</b>


Артикул №1162313
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 08.08.2023)
ЗАДАЧА 7.3 Катушка с ферромагнитным сердечником
Вариант 10
I=4 А;
w=660;
l=0,8 м;
δ=2,8 мм=0,0028 м;
S=30 см2;
U=220 В;
I=3 А;
P=280 Вт;
Rs=14 Ом;

<b>ЗАДАЧА 7.3 Катушка с ферромагнитным сердечником</b><br />Вариант 10<br />I=4 А; <br />w=660; <br />l=0,8 м; <br />δ=2,8 мм=0,0028 м; <br />S=30 см<sup>2</sup>; <br />U=220 В; <br />I=3 А; <br />P=280 Вт; <br />Rs=14 Ом;
Поисковые тэги: Векторная (топографическая) диаграмма

Артикул №1162081
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 19.07.2023)
Расчетно-графическая работа №6
«Магнитные цепи. Расчет электромагнита»
1.1 Исходные данные
1.1.1 Геометрические размеры (таблица 1).
1.1.2 Рисунок магнитной цепи (МЦ) (таблица 2).
1.1.3 Материалы МЦ (кривые намагничивания рисунок 1.1).
1.1.4 Магнитная индукция на одном из участков МЦ (таблица 1).
1.1.5 Напряжение питания U, В (таблица 1).
1.1.6 Допустимая плотность тока δ=4/мм2 (таблица 1).
1.1.7 Удельное сопротивление материала обмотки 0,017 Ом⋅мм2 /м.

1.2 Прямая задача
Требуется найти
1.2.1 Магнитодвижущую (намагничивающую) силу (МДС) Iw.
1.2.2 Число витков обмотки w.
1.2.3 Абсолютную магнитную проницаемость участков МЦ µai.
1.2.4 Магнитные сопротивления участков МЦ Rмi и МЦ в целом Rм.
1.2.5 Индуктивность обмотки L.
1.2.6 Энергию магнитного поля WM.
1.2.7 Электромагнитную силу (тяговое усилие электромагнита) FM.
1.2.8 Длину и диаметр провода обмотки lпр и dпр.
1.2.9 Сопротивление обмотки активное R.
1.2.10 Ток, потребляемый электромагнитом I.

1.3 Обратная задача
1.3.1 Построить тяговую характеристику электромагнита Fм=fFM(g) и зависимость индуктивности от величины зазора L=fL(g) по трем точкам (g/4, g/2,g), считая неизменной намагничивающую силу Iw, полученную в прямой задаче .
Вариант 78

<b>Расчетно-графическая работа №6</b> <br />«Магнитные цепи. Расчет электромагнита»<br /><b>1.1 Исходные данные</b><br /> 1.1.1 Геометрические размеры (таблица 1).  <br />1.1.2 Рисунок магнитной цепи (МЦ) (таблица 2).  <br />1.1.3 Материалы МЦ (кривые намагничивания рисунок 1.1).  <br />1.1.4 Магнитная индукция на одном из участков МЦ (таблица 1).  <br />1.1.5 Напряжение питания U, В (таблица 1).  <br />1.1.6 Допустимая плотность тока δ=4/мм<sup>2</sup> (таблица 1).  <br />1.1.7 Удельное сопротивление материала обмотки 0,017 Ом⋅мм<sup>2</sup> /м.  <br /><br /><b>1.2 Прямая задача</b> <br />Требуется найти <br />1.2.1 Магнитодвижущую (намагничивающую) силу (МДС) Iw.  <br />1.2.2 Число витков обмотки w.  <br />1.2.3 Абсолютную магнитную проницаемость участков МЦ µai.  <br />1.2.4 Магнитные сопротивления участков МЦ Rмi и МЦ в целом Rм.  <br />1.2.5 Индуктивность обмотки L.  <br />1.2.6 Энергию магнитного поля WM.  <br />1.2.7 Электромагнитную силу (тяговое усилие электромагнита) FM.  <br />1.2.8 Длину и диаметр провода обмотки lпр и dпр.  <br />1.2.9 Сопротивление обмотки активное R.  <br />1.2.10 Ток, потребляемый электромагнитом I. <br /><br /><b>1.3 Обратная задача </b><br />1.3.1 Построить тяговую характеристику электромагнита Fм=f<sub>FM</sub>(g) и зависимость индуктивности от величины зазора L=f<sub>L</sub>(g) по трем точкам (g/4, g/2,g), считая неизменной намагничивающую силу Iw, полученную в прямой задаче .<br /> <b>Вариант 78</b>


Артикул №1162080
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 19.07.2023)
Расчетно-графическая работа №6
«Магнитные цепи. Расчет электромагнита»
1.1 Исходные данные
1.1.1 Геометрические размеры (таблица 1).
1.1.2 Рисунок магнитной цепи (МЦ) (таблица 2).
1.1.3 Материалы МЦ (кривые намагничивания рисунок 1.1).
1.1.4 Магнитная индукция на одном из участков МЦ (таблица 1).
1.1.5 Напряжение питания U, В (таблица 1).
1.1.6 Допустимая плотность тока δ=4/мм2 (таблица 1).
1.1.7 Удельное сопротивление материала обмотки 0,017 Ом⋅мм2 /м.

1.2 Прямая задача
Требуется найти
1.2.1 Магнитодвижущую (намагничивающую) силу (МДС) Iw.
1.2.2 Число витков обмотки w.
1.2.3 Абсолютную магнитную проницаемость участков МЦ µai.
1.2.4 Магнитные сопротивления участков МЦ Rмi и МЦ в целом Rм.
1.2.5 Индуктивность обмотки L.
1.2.6 Энергию магнитного поля WM.
1.2.7 Электромагнитную силу (тяговое усилие электромагнита) FM.
1.2.8 Длину и диаметр провода обмотки lпр и dпр.
1.2.9 Сопротивление обмотки активное R.
1.2.10 Ток, потребляемый электромагнитом I.

1.3 Обратная задача
1.3.1 Построить тяговую характеристику электромагнита Fм=fFM(g) и зависимость индуктивности от величины зазора L=fL(g) по трем точкам (g/4, g/2,g), считая неизменной намагничивающую силу Iw, полученную в прямой задаче .
Вариант 76

<b>Расчетно-графическая работа №6</b> <br />«Магнитные цепи. Расчет электромагнита»<br /><b>1.1 Исходные данные</b><br /> 1.1.1 Геометрические размеры (таблица 1).  <br />1.1.2 Рисунок магнитной цепи (МЦ) (таблица 2).  <br />1.1.3 Материалы МЦ (кривые намагничивания рисунок 1.1).  <br />1.1.4 Магнитная индукция на одном из участков МЦ (таблица 1).  <br />1.1.5 Напряжение питания U, В (таблица 1).  <br />1.1.6 Допустимая плотность тока δ=4/мм<sup>2</sup> (таблица 1).  <br />1.1.7 Удельное сопротивление материала обмотки 0,017 Ом⋅мм<sup>2</sup> /м.  <br /><br /><b>1.2 Прямая задача</b> <br />Требуется найти <br />1.2.1 Магнитодвижущую (намагничивающую) силу (МДС) Iw.  <br />1.2.2 Число витков обмотки w.  <br />1.2.3 Абсолютную магнитную проницаемость участков МЦ µai.  <br />1.2.4 Магнитные сопротивления участков МЦ Rмi и МЦ в целом Rм.  <br />1.2.5 Индуктивность обмотки L.  <br />1.2.6 Энергию магнитного поля WM.  <br />1.2.7 Электромагнитную силу (тяговое усилие электромагнита) FM.  <br />1.2.8 Длину и диаметр провода обмотки lпр и dпр.  <br />1.2.9 Сопротивление обмотки активное R.  <br />1.2.10 Ток, потребляемый электромагнитом I. <br /><br /><b>1.3 Обратная задача </b><br />1.3.1 Построить тяговую характеристику электромагнита Fм=f<sub>FM</sub>(g) и зависимость индуктивности от величины зазора L=f<sub>L</sub>(g) по трем точкам (g/4, g/2,g), считая неизменной намагничивающую силу Iw, полученную в прямой задаче .<br /> <b>Вариант 76</b>


Артикул №1162079
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Магнитные цепи

(Добавлено: 19.07.2023)
Расчетно-графическая работа №6
«Магнитные цепи. Расчет электромагнита»
1.1 Исходные данные
1.1.1 Геометрические размеры (таблица 1).
1.1.2 Рисунок магнитной цепи (МЦ) (таблица 2).
1.1.3 Материалы МЦ (кривые намагничивания рисунок 1.1).
1.1.4 Магнитная индукция на одном из участков МЦ (таблица 1).
1.1.5 Напряжение питания U, В (таблица 1).
1.1.6 Допустимая плотность тока δ=4/мм2 (таблица 1).
1.1.7 Удельное сопротивление материала обмотки 0,017 Ом⋅мм2 /м.

1.2 Прямая задача
Требуется найти
1.2.1 Магнитодвижущую (намагничивающую) силу (МДС) Iw.
1.2.2 Число витков обмотки w.
1.2.3 Абсолютную магнитную проницаемость участков МЦ µai.
1.2.4 Магнитные сопротивления участков МЦ Rмi и МЦ в целом Rм.
1.2.5 Индуктивность обмотки L.
1.2.6 Энергию магнитного поля WM.
1.2.7 Электромагнитную силу (тяговое усилие электромагнита) FM.
1.2.8 Длину и диаметр провода обмотки lпр и dпр.
1.2.9 Сопротивление обмотки активное R.
1.2.10 Ток, потребляемый электромагнитом I.

1.3 Обратная задача
1.3.1 Построить тяговую характеристику электромагнита Fм=fFM(g) и зависимость индуктивности от величины зазора L=fL(g) по трем точкам (g/4, g/2,g), считая неизменной намагничивающую силу Iw, полученную в прямой задаче .
Вариант 56

<b>Расчетно-графическая работа №6</b> <br />«Магнитные цепи. Расчет электромагнита»<br /><b>1.1 Исходные данные</b><br /> 1.1.1 Геометрические размеры (таблица 1).  <br />1.1.2 Рисунок магнитной цепи (МЦ) (таблица 2).  <br />1.1.3 Материалы МЦ (кривые намагничивания рисунок 1.1).  <br />1.1.4 Магнитная индукция на одном из участков МЦ (таблица 1).  <br />1.1.5 Напряжение питания U, В (таблица 1).  <br />1.1.6 Допустимая плотность тока δ=4/мм<sup>2</sup> (таблица 1).  <br />1.1.7 Удельное сопротивление материала обмотки 0,017 Ом⋅мм<sup>2</sup> /м.  <br /><br /><b>1.2 Прямая задача</b> <br />Требуется найти <br />1.2.1 Магнитодвижущую (намагничивающую) силу (МДС) Iw.  <br />1.2.2 Число витков обмотки w.  <br />1.2.3 Абсолютную магнитную проницаемость участков МЦ µai.  <br />1.2.4 Магнитные сопротивления участков МЦ Rмi и МЦ в целом Rм.  <br />1.2.5 Индуктивность обмотки L.  <br />1.2.6 Энергию магнитного поля WM.  <br />1.2.7 Электромагнитную силу (тяговое усилие электромагнита) FM.  <br />1.2.8 Длину и диаметр провода обмотки lпр и dпр.  <br />1.2.9 Сопротивление обмотки активное R.  <br />1.2.10 Ток, потребляемый электромагнитом I. <br /><br /><b>1.3 Обратная задача </b><br />1.3.1 Построить тяговую характеристику электромагнита Fм=f<sub>FM</sub>(g) и зависимость индуктивности от величины зазора L=f<sub>L</sub>(g) по трем точкам (g/4, g/2,g), считая неизменной намагничивающую силу Iw, полученную в прямой задаче .<br /> <b>Вариант 56</b>


    Категории
    Заказ решения задач по ТОЭ и ОТЦ
    Заказ решения задач по Теоретической механике

    Студенческая база

    Наш сайт представляет из себя огромную базу выполненных заданий по разым учебным темам - от широкораспространенных до экзотических. Мы стараемся сделать так, чтобы большиство учеников и студентов смогли найти у нас ответы и подсказки на интересующие их темы. Каждый день мы закачиваем несколько десятков, а иногда и сотни новых файлов, а общее количество решений в нашей базе превышает 200000 работ (далеко не все из них еще размещены на сайте, но мы ежедневно над этим работаем). И не забывайте, что в любой большой базе данных умение правильно искать информацию - залог успеха, поэтому обязательно прочитайте раздел «Как искать», что сильно повысит Ваши шансы при поиске нужного решения.

    Мы в социальных сетях:

    ОГРНИП308774632500263