Артикул: 1091081

Раздел:Технические дисциплины (62023 шт.) >
  Теоретическая механика (теормех, термех) (1594 шт.) >
  Кинематика (493 шт.) >
  Уравнение движения точки (206 шт.)

Название или условие:
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 22)
x = 7t2 - 3, y = 5t, t1 = 1/4 c

Описание:
Подробное решение

Изображение предварительного просмотра:

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t<sub>1</sub>(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 22) <br />  x = 7t<sup>2</sup> - 3, y = 5t, t<sub>1</sub> = 1/4 c

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача 2. Точка движется по закону x=x(t), y=y(t). Для момента времени t=t1 найти скорость, ускорение точки и радиус кривизны траектории.
Вариант 10

Задание К-1. Определение скорости и ускорения точки по заданным уравнениям её движения.
Точка М движется в плоскости XY. Закон движения задан уравнениями: x=x(t) и y=y(t), где x и y выражены в сантиметрах, t – в секундах.
Установить вид траектории точки и для заданных моментов времени t1 и t2 найти положение точки на траектории, ее скорость, а также полное касательное и нормальное ускорения.
Вариант 7
x=3t2-1+1
y=5t2-5/3 t-2
t1=0
t2=1

Точка М движется по заданной траектории по закону s(t)=6t-0.5t2 (м). В какой момент времени t скорость точки равна 0 (м/с)
Задача К1. Определение кинематических характеристик движения материальной точки
Задание 1.2

По заданным уравнениям движения сделать анализ этого движения:
1. Найти уравнение траектории точки в координатной форме и построить ее.
2. Указать положение точки при t=0 и в заданный момент времени t1=1(с)
3. Найти и построить скорость, тангенциальное, нормальное и полное ускорения при t1=1(с), а также найти радиус кривизны ее траектории
Вариант 25

Найти скорость, ускорение и радиус кривизны точки в заданный момент времени.
x=2t+1,y=-4t2,t=1 c

Тема: Кинематика точки.
В соответствии с заданными уравнениями движения определить траекторию движения точки. Для заданного момента времени найти положение точки на траектории, её скорость и ускорение, касательное и нормальное ускорения ,а также радиус кривизны траектории в соответствующей точке. Сделать чертеж.
Вариант 9

Задача 2
Груз, сброшенный с самолета на высоте h=3000 м, движется по уравнению r=40ti+5t2j (м,с).
Построить траекторию движения груза и найти расстояние по горизонтали между точками сброса и падения.
Движение точки в плоскости
Точка движется по закону x=x(t), y=y(t). Для момента времени t=t1 найти скорость, ускорение точки и радиус кривизны траектории (x и y заданы в см, t1 – в с)
Вариант 12

Кинематика точки
Уравнения движения точки имеют вид x=xk(t), y=yk(t), где индекс k – номер варианта. В момент времени t найти векторы скорости V, ускорения W, касательную (тангенциальную) Wτ и нормальную Wn составляющие ускорения, радиус кривизны траектории ρ.
Вариант 4

Определение скорости и ускорения точки по заданным уравнениям движения
В соответствии с заданными уравнениями движения определить траекторию движения точки. Для заданного момента времени найти положение точки на траектории, её скорость и ускорение, касательное и нормальное ускорения, а также радиус кривизны траектории в соответствующей точке. Сделать чертеж.