Артикул: 1161677

Раздел:Технические дисциплины (105210 шт.) >
  Теоретическая механика (теормех, термех) (2046 шт.) >
  Кинематика (587 шт.) >
  Уравнение движения точки (224 шт.)

Название или условие:
Задача К1 . Определение скорости и ускорения точки по заданным уравнениям её движения.
По заданным уравнениям движения точки установить вид её траектории и для момента времени t=t1 (с) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.
Необходимые для решения данные приведены в таблице 16.
Вариант 0

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задача К1 . Определение скорости и ускорения точки по заданным уравнениям её движения.</b> <br />По заданным уравнениям движения точки установить вид её траектории и для момента времени t=t1 (с) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. <br />Необходимые для решения данные приведены в таблице 16.<br /> <b>Вариант 0</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Определить и построить графики зависимостей Wτ(t), Vτ(t), S(t), L(t) (L – пройденный путь). Показать положение точки на траектории в начальный момент и в момент времени t* . Для указанных моментов времени определить и изобразить на чертеже векторы скорости, касательного и нормального ускорений, а также вектор полного ускорения для указанных моментов времени.
Вариант 422

Определение скорости и ускорения точки по заданным уравнениям её движения
По закону движения точки М на неподвижной плоскости, заданному в коор-динатном виде, требуется установить вид её траектории и для момента времени t1=1 с найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории

Дано:
y = 2sin(πt/6) см
x = 2 - 3cos(πt/3) см
t1 = 0, t2 = 1 c
Точка движется а плоскости oxy. Уравнение движения точки задано координатами: x = x(t), y = y(t), где x и y в сантиметрах, t - в секундах. Уравнение y = y(t) дано в таблице 1 - номер варианта соответствует сумме трех последних цифр номера зачетной книжки (г + д + е). Уравнение x = x(t) дано в таблице 2, где номер столбца выбирается в соответствии с номером варианта, а номер строки соответствует последней цифре номера зачетной книжки (е).
Требуется:
- записать уравнение траектории в декартовой системе координат: y = y(x);
- построить траекторию;
- определить положение точки на траектории в начальный момент времени t = 0 c, направление движения точки по траектории, положение точки на траектории через t = 1 c
- вычислить вектор скорости u и вектор ускорения а точки для t = 0 и t = 1 c
- задать движение точки естественным способом: s = s(t)
- вычислить нормальную и касательную составляющие ускорения точки для t = 0 и t = 1 c геометрически и аналитически
- вычислить радиус кривизны для t = 0 и t = 1 c
Функциональные зависимости y = y(t), x= x(t) заданы в таблицах 2.1(а) и 2.2.(б) соответственно

Задача 1.1
Точка, получив направленную горизонтальную скорость, движется по закону, заданному уравнениями. Найти уравнение траектории (y=f(x)), скорость и ускорение точки (нормальную и касательную составляющие), радиус кривизны траектории в любом положении, а также в заданный момент времени t.
Построить в масштабе траекторию движения точки, указать на графике положение точки в момент времени t, направление векторов скорости и ускорения точки в заданный момент времени.
Вариант 3
Дано: x=2t, y=10t2/2, t = 3 с
Задание К1
3.1.1. Условия задачи. Материальная точка А движется в плоскости хОy. Движение точки задано уравнениями, где координаты х и y выражены в сантиметрах, а время t – в секундах.
Конкретный вид функций f1(t) и f2(t), в зависимости от номера варианта (шифра), определяется по данным, приведенным в табл. К1.
Определить уравнение траектории точки, а также законы изменения проекций скорости vx, vy и ускорения ах, аy на оси координат как функции времени.
Вычислить для момента времени t = 1 с координаты точки, скорость и ускорение точки и их проекции на оси координат, касательную aτ и нормальную an составляющие полного ускорения, а также длину радиуса кривизны ρ траектории.
Показать на схеме в выбранном масштабе траекторию точки (можно чертить только часть траектории в окрестностях точки А в момент времени t = 1 c), векторы V, a и их составляющих Vx, Vy , ax, ay, aτ, an, а также центр С кривизны траектории (при малой кривизне траектории, когда центр С находится за пределами схемы, достаточно показать направление к центру кривизны)
Вариант 789

Задание К-1. Определение скорости и ускорения точки по заданным уравнениям её движения.
Точка М движется в плоскости XY. Закон движения задан уравнениями: x=x(t) и y=y(t), где x и y выражены в сантиметрах, t – в секундах.
Установить вид траектории точки и для заданных моментов времени t1 и t2 найти положение точки на траектории, ее скорость, а также полное касательное и нормальное ускорения.
Вариант 7
x=3t2-1+1
y=5t2-5/3 t-2
t1=0
t2=1

Кинематика точки
Уравнения движения точки имеют вид x=xk(t), y=yk(t), где индекс k – номер варианта. В момент времени t найти векторы скорости V, ускорения W, касательную (тангенциальную) Wτ и нормальную Wn составляющие ускорения, радиус кривизны траектории ρ.
Вариант 4

Движение точки в плоскости
Точка движется по закону x=x(t), y=y(t). Для момента времени t=t1 найти скорость, ускорение точки и радиус кривизны траектории (x и y заданы в см, t1 – в с)
Вариант 12

Задание 1.1
По заданным уравнениям x=x(t), y=y(t) движения точки сделать анализ этого движения:
1. Найти уравнение траектории точки в координатной форме и построить её.
2. Указать положение точки при t=0 и в заданный момент времени t=t1;
3. Найти и построить скорость, тангенциальное, нормальное и полное ускорение точки при t=t1, а также найти радиус кривизны её траектории
Вариант 25

Задача К1
По заданным уравнениям движения точки М х = x(t) и у = y(t) установить и построить вид её траектории. Для момента времени t = 1 с найти и построить положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице
Рисунок 7 условие 9