Артикул: 1164706

Раздел:Технические дисциплины (108208 шт.) >
  Теоретическая механика (теормех, термех) (2207 шт.) >
  Кинематика (634 шт.) >
  Уравнение движения точки (232 шт.)

Название или условие:
Задача 3. Точка движется по закону x=x(t), y=y(t). Для момента времени t=t1 найти скорость, ускорение точки и радиус кривизны траектории.
Вариант 8

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задача 3.</b> Точка движется по закону x=x(t), y=y(t). Для момента времени t=t1 найти скорость, ускорение точки и радиус кривизны траектории.  <br /><b>Вариант 8</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Дано: x = 3t2 + 2 (см), y = -4t (см), z = 3t (см), t1 = 1/2 c. Найти x(t1), y(t1), u(t1), a(t1), an(t1), aτ(t1), ρ
Задача 2
Груз, сброшенный с самолета на высоте h=3000 м, движется по уравнению r=40ti+5t2j (м,с).
Построить траекторию движения груза и найти расстояние по горизонтали между точками сброса и падения.
Задача 2. Точка движется по закону x=x(t), y=y(t). Для момента времени t=t1 найти скорость, ускорение точки и радиус кривизны траектории.
Вариант 10

Точка начинает движение из состояния покоя и движется по прямой с постоянным ускорением a=0,7 м/с2. Определить путь, который точка пройдет за промежуток времени от t1=4 с до t2=6 с.
Задание К1. Определение скорости и ускорения точки по заданным уравнениям ее движения
По заданным уравнениям движения точки М установить вид ее траектории и для момента времени t = t1 (с) найти положение точки на траектории, ее скорость, полное, касательное и нормальнее ускорения, а также радиус кривизны траектории в соответствующей точке.
Вариант 7

Определить и построить графики зависимостей Wτ(t), Vτ(t), S(t), L(t) (L – пройденный путь). Показать положение точки на траектории в начальный момент и в момент времени t* . Для указанных моментов времени определить и изобразить на чертеже векторы скорости, касательного и нормального ускорений, а также вектор полного ускорения для указанных моментов времени.
Вариант 422

Кинематика точки
Уравнения движения точки имеют вид x=xk(t), y=yk(t), где индекс k – номер варианта. В момент времени t найти векторы скорости V, ускорения W, касательную (тангенциальную) Wτ и нормальную Wn составляющие ускорения, радиус кривизны траектории ρ.
Вариант 4

Задача К1
По заданным уравнениям движения точки М х = x(t) и у = y(t) установить и построить вид её траектории. Для момента времени t = 1 с найти и построить положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице.
Рисунок 6 условие 9

Дано:
y = 2sin(πt/6) см
x = 2 - 3cos(πt/3) см
t1 = 0, t2 = 1 c
Точка движется а плоскости oxy. Уравнение движения точки задано координатами: x = x(t), y = y(t), где x и y в сантиметрах, t - в секундах. Уравнение y = y(t) дано в таблице 1 - номер варианта соответствует сумме трех последних цифр номера зачетной книжки (г + д + е). Уравнение x = x(t) дано в таблице 2, где номер столбца выбирается в соответствии с номером варианта, а номер строки соответствует последней цифре номера зачетной книжки (е).
Требуется:
- записать уравнение траектории в декартовой системе координат: y = y(x);
- построить траекторию;
- определить положение точки на траектории в начальный момент времени t = 0 c, направление движения точки по траектории, положение точки на траектории через t = 1 c
- вычислить вектор скорости u и вектор ускорения а точки для t = 0 и t = 1 c
- задать движение точки естественным способом: s = s(t)
- вычислить нормальную и касательную составляющие ускорения точки для t = 0 и t = 1 c геометрически и аналитически
- вычислить радиус кривизны для t = 0 и t = 1 c
Функциональные зависимости y = y(t), x= x(t) заданы в таблицах 2.1(а) и 2.2.(б) соответственно

Задание К-1. Определение скорости и ускорения точки по заданным уравнениям её движения.
Точка М движется в плоскости XY. Закон движения задан уравнениями: x=x(t) и y=y(t), где x и y выражены в сантиметрах, t – в секундах.
Установить вид траектории точки и для заданных моментов времени t1 и t2 найти положение точки на траектории, ее скорость, а также полное касательное и нормальное ускорения.
Вариант 7
x=3t2-1+1
y=5t2-5/3 t-2
t1=0
t2=1