Артикул: 1166848

Раздел:Технические дисциплины (110347 шт.) >
  Теоретическая механика (теормех, термех) (2362 шт.) >
  Кинематика (672 шт.) >
  Уравнение движения точки (246 шт.)

Название или условие:
Точка движется в плоскости Оху. Уравнение движения точки задано координатами:
x=t-4
y=(t+1)2-2 ;
где координаты выражены в сантиметрах, а время t в секундах. По заданным уравнениям движения точки М установить вид ее траектории. Геометрически и аналитически, для моментов времени t=0 сек и t=1 сек найти положение точки на траектории, скорость, ускорение полное, касательную и нормальную составляющую ускорения, а так же радиус кривизны траектории
Вариант 23

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Точка движется в плоскости Оху. Уравнение движения точки задано координатами:<br />x=t-4<br />y=(t+1)<sup>2</sup>-2   ;<br />    где координаты выражены в сантиметрах, а время t в секундах. По заданным уравнениям движения точки М установить вид ее траектории. Геометрически и аналитически, для моментов времени t=0 сек и t=1 сек найти положение точки на траектории, скорость, ускорение полное, касательную и нормальную составляющую ускорения, а так же радиус кривизны траектории<br /><b>Вариант 23</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача К1
По заданным уравнениям движения точки М х = x(t) и у = y(t) установить и построить вид её траектории. Для момента времени t = 1 с найти и построить положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице.
Рисунок 6 условие 9

Задание К-1. Определение скорости и ускорения точки по заданным уравнениям её движения.
Точка М движется в плоскости XY. Закон движения задан уравнениями: x=x(t) и y=y(t), где x и y выражены в сантиметрах, t – в секундах.
Установить вид траектории точки и для заданных моментов времени t1 и t2 найти положение точки на траектории, ее скорость, а также полное касательное и нормальное ускорения.
Вариант 7
x=3t2-1+1
y=5t2-5/3 t-2
t1=0
t2=1

Определение скорости и ускорения точки по заданным уравнениям движения
В соответствии с заданными уравнениями движения определить траекторию движения точки. Для заданного момента времени найти положение точки на траектории, её скорость и ускорение, касательное и нормальное ускорения, а также радиус кривизны траектории в соответствующей точке. Сделать чертеж.

Задача К1 . Определение скорости и ускорения точки по заданным уравнениям её движения.
По заданным уравнениям движения точки установить вид её траектории и для момента времени t=t1 (с) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.
Необходимые для решения данные приведены в таблице 16.
Вариант 0

Задача К–1. Вариант 14.
Определение скорости и ускорения точки, если закон движения точки задан естественным способом
Дано: точка движется по дуге окружности. R = 2 м, S = 6t2+4 м
Найти: скорость и ускорение точки при t = 1 c .
Определить траекторию точки и ее скорость по заданным уравнениям движения.
Задача К1.
Определение кинематических характеристик движения материальной точки

По заданным уравнениям движения точки для момента времени t вычислить ее скорость, нормальное, касательное и полное ускорения, а также радиус кривизны траектории. На рисунке в масштабе изобразить траекторию движения точки и для заданного момента времени t построить векторы скорости и ускорения.
Вариант 14

Задача 2. Точка движется по закону x=x(t), y=y(t). Для момента времени t=t1 найти скорость, ускорение точки и радиус кривизны траектории.
Вариант 10

Задача К1
По заданным уравнениям движения точки М х = x(t) и у = y(t) установить и построить вид её траектории. Для момента времени t = 1 с найти и построить положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице
Рисунок 7 условие 9

Задание К1
3.1.1. Условия задачи. Материальная точка А движется в плоскости хОy. Движение точки задано уравнениями, где координаты х и y выражены в сантиметрах, а время t – в секундах.
Конкретный вид функций f1(t) и f2(t), в зависимости от номера варианта (шифра), определяется по данным, приведенным в табл. К1.
Определить уравнение траектории точки, а также законы изменения проекций скорости vx, vy и ускорения ах, аy на оси координат как функции времени.
Вычислить для момента времени t = 1 с координаты точки, скорость и ускорение точки и их проекции на оси координат, касательную aτ и нормальную an составляющие полного ускорения, а также длину радиуса кривизны ρ траектории.
Показать на схеме в выбранном масштабе траекторию точки (можно чертить только часть траектории в окрестностях точки А в момент времени t = 1 c), векторы V, a и их составляющих Vx, Vy , ax, ay, aτ, an, а также центр С кривизны траектории (при малой кривизне траектории, когда центр С находится за пределами схемы, достаточно показать направление к центру кривизны)
Вариант 789