Артикул: 1054772

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Уравнение движения точки (196 шт.)

Название:По заданным уравнениям движения точки M установить вид ее траектории и для момента времени t=t1 (c) найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.
Вариант 63

Описание:
Подробное решение

Изображение предварительного просмотра:

По заданным уравнениям движения точки M установить вид ее траектории и для момента времени t=t1 (c) найти положение точки на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.<br /> Вариант 63

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 29)
x = 5t2 + (5t/3) - 3, y = 3t2 + t + 3, t = 1 c

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 9)
Задача К1
Известен закон движения точки M в плоскости Oxy: x = 4 − 2t, y = 3 − 4 cos(πt/4).
Требуется найти вид ее траектории. Для заданного момента времени t1 = 1 с определить:
- положение точки M на траектории;
- скорость и ускорение точки M;
- ее касательное и нормальное ускорения;
- радиус кривизны в соответствующей точке траектории.

Даны уравнения движения груза, сброшенного с самолета.
Определить:
1) время Т и дальность L полета груза;
2) скорость груза в момент падения;
3) ускорение груза.
Дано: x=90t, y=1500-4,9t2
Найти: Т, L, υ, а.

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x=8sin π/2 t-4, y=8cos π/2 t + 4

Задача К1
8 вариант
Дано:
t1=1с
х = 4 - 6 sin(πt/6), см
у = 8 cos(πt/6) - 3, см
Найти уравнение траектории точки М; для момента времени t1=1с найти положение точки на траектории, ее скорость, полное ускорение, касательное и нормальное ускорения, а также радиус кривизны в соответствующей точке.
Материальная точка М движется в плоскости, на которой введена прямоугольная декартова система координат Оху. Движение точки задано координатным способом:
х =x (t)=k_1*cos⁡(2*k*t^2 )+k_2=- 2*cos⁡(2*0,9*t^2 )+3,
у = y(t)= k_3*cos⁡(k*t^2 )+k_4=- cos⁡(2*0,9*t^2 )+1.
Координаты точкиx, y измеряются в метрах, а аргумент t – в секундах.
Определить в заданный момент времени t=1,2 с все кинематические характеристики движущейся точки: уравнение траектории; координаты, проекции и величину скорости VX, VY и V, проекции и величину полного ускорение aX, aY и a, а также ее касательное aτ и нормальное an ускорения, радиус кривизны и закон движения точки по траектории s=s(t). Изобразить на рисунке полученные результаты.

Задача 1.1
Точка, получив направленную горизонтальную скорость, движется по закону, заданному уравнениями. Найти уравнение траектории (y=f(x)), скорость и ускорение точки (нормальную и касательную составляющие), радиус кривизны траектории в любом положении, а также в заданный момент времени t.
Построить в масштабе траекторию движения точки, указать на графике положение точки в момент времени t, направление векторов скорости и ускорения точки в заданный момент времени.
Вариант 3
Дано: x=2t, y=10t2/2, t = 3 с
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 10)

x= -4cos(πt/3) см, y= -2sin(πt/3) -3 см
t=1, с

Определение скорости и ускорения точки по заданным уравнениям её движения
По закону движения точки М на неподвижной плоскости, заданному в коор-динатном виде, требуется установить вид её траектории и для момента времени t1=1 с найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории