Артикул: 1164740

Раздел:Технические дисциплины (108242 шт.) >
  Теоретическая механика (теормех, термех) (2209 шт.) >
  Кинематика (636 шт.) >
  Уравнение движения точки (234 шт.)

Название или условие:
К.5. Определение кинематических характеристик движения твердого тела и его точек по уравнениям Эйлера.
Заданы уравнения сферического движения твердого тела ψ=ψ(t), Θ=Θ(t) и φ=φ(t),где ψ, Θ и φ-углы Эйлера Определить для момента времени t=t1 угловую скорость и угловое ускорение точки М, координаты которой в подвижной системе, жестко связанной с телом, ξ, η, ζ.
Вариант 5

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>К.5. Определение кинематических характеристик движения твердого тела и его точек по уравнениям Эйлера. </b><br />Заданы уравнения сферического движения твердого тела ψ=ψ(t), Θ=Θ(t)  и φ=φ(t),где ψ, Θ и  φ-углы Эйлера Определить для момента времени t=t1 угловую скорость и угловое ускорение точки М, координаты которой в подвижной системе, жестко связанной с телом, ξ, η, ζ.  <br /><b>Вариант 5</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Точка начинает движение из состояния покоя и движется по прямой с постоянным ускорением a=0,7 м/с2. Определить путь, который точка пройдет за промежуток времени от t1=4 с до t2=6 с.ЗАДАНИЕ К1 Вариант 26
Дано: уравнения движения точки в плоскости ху: x = 4-2t, y = 1-3t2; t1 = 1 с.
Найти уравнение траектории точки; для момента времени t1 = 1 с определить скорость, ускорение и радиус кривизны траектории

Задание 1.1
По заданным уравнениям x=x(t), y=y(t) движения точки сделать анализ этого движения:
1. Найти уравнение траектории точки в координатной форме и построить её.
2. Указать положение точки при t=0 и в заданный момент времени t=t1;
3. Найти и построить скорость, тангенциальное, нормальное и полное ускорение точки при t=t1, а также найти радиус кривизны её траектории
Вариант 25

Дано:
y = 2sin(πt/6) см
x = 2 - 3cos(πt/3) см
t1 = 0, t2 = 1 c
Точка движется а плоскости oxy. Уравнение движения точки задано координатами: x = x(t), y = y(t), где x и y в сантиметрах, t - в секундах. Уравнение y = y(t) дано в таблице 1 - номер варианта соответствует сумме трех последних цифр номера зачетной книжки (г + д + е). Уравнение x = x(t) дано в таблице 2, где номер столбца выбирается в соответствии с номером варианта, а номер строки соответствует последней цифре номера зачетной книжки (е).
Требуется:
- записать уравнение траектории в декартовой системе координат: y = y(x);
- построить траекторию;
- определить положение точки на траектории в начальный момент времени t = 0 c, направление движения точки по траектории, положение точки на траектории через t = 1 c
- вычислить вектор скорости u и вектор ускорения а точки для t = 0 и t = 1 c
- задать движение точки естественным способом: s = s(t)
- вычислить нормальную и касательную составляющие ускорения точки для t = 0 и t = 1 c геометрически и аналитически
- вычислить радиус кривизны для t = 0 и t = 1 c
Функциональные зависимости y = y(t), x= x(t) заданы в таблицах 2.1(а) и 2.2.(б) соответственно

Точка М движется по заданной траектории по закону s(t)=6t-0.5t2 (м). В какой момент времени t скорость точки равна 0 (м/с)
Тема: Кинематика точки.
В соответствии с заданными уравнениями движения определить траекторию движения точки. Для заданного момента времени найти положение точки на траектории, её скорость и ускорение, касательное и нормальное ускорения ,а также радиус кривизны траектории в соответствующей точке. Сделать чертеж.
Вариант 9

Задание К1
3.1.1. Условия задачи. Материальная точка А движется в плоскости хОy. Движение точки задано уравнениями, где координаты х и y выражены в сантиметрах, а время t – в секундах.
Конкретный вид функций f1(t) и f2(t), в зависимости от номера варианта (шифра), определяется по данным, приведенным в табл. К1.
Определить уравнение траектории точки, а также законы изменения проекций скорости vx, vy и ускорения ах, аy на оси координат как функции времени.
Вычислить для момента времени t = 1 с координаты точки, скорость и ускорение точки и их проекции на оси координат, касательную aτ и нормальную an составляющие полного ускорения, а также длину радиуса кривизны ρ траектории.
Показать на схеме в выбранном масштабе траекторию точки (можно чертить только часть траектории в окрестностях точки А в момент времени t = 1 c), векторы V, a и их составляющих Vx, Vy , ax, ay, aτ, an, а также центр С кривизны траектории (при малой кривизне траектории, когда центр С находится за пределами схемы, достаточно показать направление к центру кривизны)
Вариант 789

Задание К.1. Определение скорости и ускорения точки по заданным уравнениям ее движения.
По заданным уравнениям движения точки М установить вид её траектории и для момента времени t = t1 (c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице.
Вариант 3

Задача К1
По заданным уравнениям движения точки М х = x(t) и у = y(t) установить и построить вид её траектории. Для момента времени t = 1 с найти и построить положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице
Рисунок 7 условие 9

Найти скорость, ускорение и радиус кривизны точки в заданный момент времени.
x=2t+1,y=-4t2,t=1 c