Артикул: 1113999

Раздел:Технические дисциплины (72043 шт.) >
  Теоретическая механика (теормех, термех) (1804 шт.) >
  Кинематика (528 шт.) >
  Уравнение движения точки (213 шт.)

Название или условие:
Дано:
y = 2sin(πt/6) см
x = 2 - 3cos(πt/3) см
t1 = 0, t2 = 1 c
Точка движется а плоскости oxy. Уравнение движения точки задано координатами: x = x(t), y = y(t), где x и y в сантиметрах, t - в секундах. Уравнение y = y(t) дано в таблице 1 - номер варианта соответствует сумме трех последних цифр номера зачетной книжки (г + д + е). Уравнение x = x(t) дано в таблице 2, где номер столбца выбирается в соответствии с номером варианта, а номер строки соответствует последней цифре номера зачетной книжки (е).
Требуется:
- записать уравнение траектории в декартовой системе координат: y = y(x);
- построить траекторию;
- определить положение точки на траектории в начальный момент времени t = 0 c, направление движения точки по траектории, положение точки на траектории через t = 1 c
- вычислить вектор скорости u и вектор ускорения а точки для t = 0 и t = 1 c
- задать движение точки естественным способом: s = s(t)
- вычислить нормальную и касательную составляющие ускорения точки для t = 0 и t = 1 c геометрически и аналитически
- вычислить радиус кривизны для t = 0 и t = 1 c
Функциональные зависимости y = y(t), x= x(t) заданы в таблицах 2.1(а) и 2.2.(б) соответственно

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Дано: <br /> y = 2sin(πt/6) см <br /> x = 2 - 3cos(πt/3) см <br /> t<sub>1</sub> = 0, t<sub>2</sub> = 1 c  <br /> Точка движется а плоскости oxy. Уравнение движения точки задано координатами: x = x(t), y = y(t), где x и y в сантиметрах, t - в секундах. Уравнение y = y(t) дано в таблице 1 - номер варианта соответствует сумме трех последних цифр номера зачетной книжки (г + д + е). Уравнение x = x(t) дано в таблице 2, где номер столбца выбирается в соответствии с номером варианта, а номер строки соответствует последней цифре номера зачетной книжки (е). <br /> Требуется: <br /> - записать уравнение траектории в декартовой системе координат: y = y(x); <br /> - построить траекторию; <br /> - определить положение точки на траектории в начальный момент времени t = 0 c, направление движения точки по траектории, положение точки на траектории через t = 1 c  <br /> - вычислить вектор скорости u и вектор ускорения а точки для t = 0 и t = 1 c <br /> - задать движение точки естественным способом: s = s(t)  <br /> - вычислить нормальную и касательную составляющие ускорения точки для t = 0 и t = 1 c геометрически и аналитически <br /> - вычислить радиус кривизны для t = 0 и t = 1 c<br /> Функциональные зависимости y = y(t), x= x(t) заданы в таблицах 2.1(а) и 2.2.(б) соответственно

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Вариант 28
Задача 2.
Точка движется по уравнениям x=20t2+5, y=15t2-3 (м/с). Определить скорость, касательное, нормальное и полное ускорение точки, а также радиус кривизны траектории при t=2 сек.
Вариант 28
Задача 1.
По заданному уравнению вращения тела φ = 5t3+3t2-10t определить угловую скорость, угловое ускорение и характер вращения при t = 0, t = 1 с.
Определить линейные скорость и ускорение точки, удаленной на расстоянии 0,5 м от оси вращения в момент t=1 с.
Задача К1.
Определение кинематических характеристик движения материальной точки

По заданным уравнениям движения точки для момента времени t вычислить ее скорость, нормальное, касательное и полное ускорения, а также радиус кривизны траектории. На рисунке в масштабе изобразить траекторию движения точки и для заданного момента времени t построить векторы скорости и ускорения.
Вариант 14

Определить траекторию точки и ее скорость по заданным уравнениям движения.
К1.
По данным уравнениям движения точки М установить вид её траектории и для момента величины t_0, t_1, найти положение точки на траектории, для момента времени t_1, найти её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны в данной точке.
Вариант 1

Практическая работа №3
Уравнения траектории движения материальной точки.

Найти уравнение траектории точки, а также для момента времени t = t1 (c) определить положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории в соответствующей точке.
Вариант 10
x(t)=-0.2t2+1,см;
y(t)=t2+3t,см;
t1=1.2 c;

Задание 1.1
По заданным уравнениям x=x(t), y=y(t) движения точки сделать анализ этого движения:
1. Найти уравнение траектории точки в координатной форме и построить её.
2. Указать положение точки при t=0 и в заданный момент времени t=t1;
3. Найти и построить скорость, тангенциальное, нормальное и полное ускорение точки при t=t1, а также найти радиус кривизны её траектории
Вариант 25

Задача К1-75 (Рисунок К1.7, номер условия 5, С.М. Тарг 1989 г.)
Тема: Кинематика точки.
В соответствии с заданными уравнениями движения определить траекторию движения точки. Для заданного момента времени найти положение точки на траектории, её скорость и ускорение, касательное и нормальное ускорения ,а также радиус кривизны траектории в соответствующей точке. Сделать чертеж.
Вариант 8

Задание К.1. Определение скорости и ускорения точки по заданным уравнениям ее движения.
По заданным уравнениям движения точки М установить вид её траектории и для момента времени t = t1 (c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице.
Вариант 3