Артикул: 1166119

Раздел:Технические дисциплины (109616 шт.) >
  Сопротивление материалов (сопромат) (729 шт.) >
  Расчет ступенчатых стержней (брусьев) (118 шт.)

Название или условие:
Продольные силы, напряжения и перемещения при растяжении-сжатии
Сплошной ступенчатый брус нагружен силами P1, P2, P3, направленными вдоль его оси, как показано на рисунке 1.1.
Величина сил, длины участков L1, L2, L3, а также модуль упругости E и допускаемое напряжение [σ] указаны в таблице 1.1. Форма сечения А – квадрат со стороной b или круг диаметром d.
Построить эпюры продольных сил N, нормальных напряжений σ и продольных перемещений сечений бруса δ (деформации упругие). Найти размер сечения из расчета на прочность. Вычислить абсолютное смещение свободного торца и сравнить с [δ] допускаемым.
Вариант 5

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Продольные силы, напряжения и перемещения при растяжении-сжатии</b><br />Сплошной ступенчатый брус нагружен силами  P1, P2, P3, направленными вдоль его оси, как показано на рисунке 1.1. <br />Величина сил, длины участков  L1, L2, L3, а также модуль упругости E  и допускаемое напряжение [σ]  указаны в таблице 1.1. Форма сечения А – квадрат со стороной b или круг диаметром  d. <br />Построить эпюры продольных сил  N, нормальных напряжений σ и продольных перемещений сечений бруса δ (деформации упругие). Найти размер сечения из расчета на прочность. Вычислить абсолютное смещение свободного торца и сравнить с [δ] допускаемым.<br /><b>Вариант 5</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Расчет статически неопределимого бруса
Для ступенчатого бруса, изображенного на рисунке 2.1, раскрыть статическую неопределимость и найти опорные реакции. Собственный вес не учитывать.
Построить эпюры продольных (нормальных) сил N, нормальных напряжений σ.
В опасном сечении найти размер поперечного сечения А из расчета на прочность σmax≤[σ].
Построить эпюры продольных перемещений сечений бруса δ. Приняв из таблицы 2.1 силу P = P1, длину каждого участка L = L1 , модуль упругости E, вычислить наибольшее смещение поперечного сечения
Вариант 5

Задача №2
РАСЧЕТ СТУПЕНЧАТОГО БРУСА НА РАСТЯЖЕНИЕ И СЖАТИЕ
Часть I. Для заданного статически определимого стального ступенчатого бруса требуется:
1. Построить эпюру продольных сил
2. Из условия прочности по нормальным напряжениям подобрать поперечные сечения для каждой ступени, приняв [σ]=160 Мпа.
3. Определить полную деформацию бруса и построить эпюру перемещения поперечных сечений, приняв Е = 2•105 Мпа.
4. Найти перемещение заданного сечения А-А.
Часть II. Для ступенчатого бруса, рассмотренного в части I (с подобранными поперечными сечениями), жестко закрепив свободный конец, требуется:
1. Раскрыть статическую неопределимость.
2. Построить эпюры продольных сил и нормальных напряжений
3. Найти полные напряжения для каждой ступени и сравнить их с допускаемыми напряжениями
Группа А Вариант 2
Дано: F = 24 кН, l = 0.4 м

Задание 1. «Растяжение, сжатие»
Для стержня, загруженного в соответствии с данными, в табл. 1.1:
а) построить эпюру продольных сил;
б) подобрать из условия прочности размеры стержня круглого и квадратного сечений;
в) определить перемещение свободного конца стержня.
Для четных вариантов исходная схема стержня изображена на рис. 1.2, для нечетных – на рис. 1.3. Значения допускаемых напряжений можно взять из приложения.

Расчеты на растяжение-сжатие чугунных стержней.
Для заданного чугунного стержня:
1) Определить необходимые по условию прочности площади поперечных сечений стержней.
2) Определить перемещения сечений стержня (считая слева направо), относительно левой заделки.)
Вариант 15
Дано:
l=500 мм;
A1=3A (мм2);
A2=2,5A (мм2)
P1=5P; P2=3P; P=50 кН
Материал стержня – чугун СЧ18 – 36
σр=180 МПа;
σсж=700 МПа

Консольный стержень нагружен равномерно распределенными нагрузка-ми интенсивностью g1 и g2 и сосредоточенными силами P1, P2, P3. Построить эпюру нормальной силы
Вариант 7667

Стальной брус нагружен силами F1, F2, F3. Построить эпюры продольных сил и нормальных напряжений по длине бруса. Данные для решения задачи взять из таблицы 3 и рисунка 3.
Двухступенчатый брус, длины ступеней которого указаны, нагружен силами F1 и F2. Построить эпюры продольных сил и нормальных напряжений по длине бруса. Определить удлинение(укорочение) бруса, приняв Е=2•105 МПа.
Задача 3. Построить эпюры продольных сил N, нормальных напряжений σ, проверить прочность и определить перемещения свободного конца стержня. Материал – сталь Ст3, [σ] = 160МПа. Е = 200000 МПа. Остальные данные взять из Таблицы №3 согласно своему варианту.
Вариант 9

Задача 1. Растяжение и сжатие
Для заданного стержня переменного сечения построить эпюры продольных сил N и нормальных напряжений σ
Вариант 041

Расчетно-графическая работа №1
Расчёт статически определимого бруса на растяжение (сжатие) с учётом собственного веса

Задание: построить эпюры нормальных сил и напряжений с учетом собственного веса
Вариант 7
Дано: F = 1.7 кН, A = 26 см2
a=3.7 м, b = 3.1 м, c = 1.7 м
Е = 2·105 МПа
γ = 7,85 г/см3