Артикул: 1166705

Раздел:Технические дисциплины (110202 шт.) >
  Сопротивление материалов (сопромат) (738 шт.) >
  Расчет ступенчатых стержней (брусьев) (122 шт.)

Название или условие:
Вариант 9
Задача 2
.
Для прямого стержня, испытывающего растяжение или сжатие, определить из условия равновесия величину интенсивности равномерно распределённой нагрузки q и построить эпюру продольной силы.
Исходные данные: а1 = 1; а2 =1,5; а3 = 2; в1 = 0,5; в2 = 1; в3 = 1,5

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Вариант 9 <br />Задача 2</b>.<br /> Для прямого стержня, испытывающего растяжение или сжатие, определить из условия равновесия величину интенсивности равномерно распределённой нагрузки q и построить эпюру продольной силы. <br />Исходные данные: а1 = 1; а2 =1,5; а3 = 2; в1 = 0,5; в2 = 1; в3 = 1,5

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача 1. Прочность стержня при растяжении — сжатии
Для стержня ступенчато-переменного сечения, изображенного на рис. 1-1, требуется:
1. Вычислить продольные силы и нормальные напряжения в поперечных сечениях стержня.
2. В выбранном масштабе построить эпюры продольных сил и нормальных напряжений по длине стержня.
3. Проверить прочность стержня по нормальным напряжениям
4. Вычислить продольные перемещения сечений стержня.
5. В выбранном масштабе построить эпюру продольных перемещений по длине стержня.
Дополнительные указания.
Материал стержня — сталь, модуль упругости E = 2*105 МПа, допускаемые нормальные напряжения [σ] = 200 МПа. Нижний конец стержня считается неподвижным (жестко закрепленным).
Вариант 10

Задание 1. «Растяжение, сжатие»
Для стержня, загруженного в соответствии с данными, в табл. 1.1:
а) построить эпюру продольных сил;
б) подобрать из условия прочности размеры стержня круглого и квадратного сечений;
в) определить перемещение свободного конца стержня.
Для четных вариантов исходная схема стержня изображена на рис. 1.2, для нечетных – на рис. 1.3. Значения допускаемых напряжений можно взять из приложения.
Вариант 872

Задача 35
Двухступенчатый стальной брус, длины ступеней которого указаны на рисунке, нагружен силами F1 и F2.
Построить эпюры продольных сил и нормальных напряжений по длине бруса.
Определить перемещение свободного конца бруса, приняв E=2·105 МПа.
Проверить прочность бруса и указать, на сколько (%) брус недогружен или перегружен [σ] = 160 МПа.

Задание 1. «Растяжение, сжатие»
Для стержня, загруженного в соответствии с данными, в табл. 1.1:
а) построить эпюру продольных сил;
б) подобрать из условия прочности размеры стержня круглого и квадратного сечений;
в) определить перемещение свободного конца стержня.
Для четных вариантов исходная схема стержня изображена на рис. 1.2, для нечетных – на рис. 1.3. Значения допускаемых напряжений можно взять из приложения.

Расчет статически неопределимого бруса
Для ступенчатого бруса, изображенного на рисунке 2.1, раскрыть статическую неопределимость и найти опорные реакции. Собственный вес не учитывать.
Построить эпюры продольных (нормальных) сил N, нормальных напряжений σ.
В опасном сечении найти размер поперечного сечения А из расчета на прочность σmax≤[σ].
Построить эпюры продольных перемещений сечений бруса δ. Приняв из таблицы 2.1 силу P = P1, длину каждого участка L = L1 , модуль упругости E, вычислить наибольшее смещение поперечного сечения
Вариант 5

Для стального стержня (Е = 2 * 105 МПа) требуется:
1) Построить эпюру продольных сил;
2) Вычислить нормальные напряжения во всех характерных сечениях и построить эпюру напряжений;
3) Вычислить удлинения каждого участка;
4) Вычислить перемещение сечение n-n и определить удлинение всего стержня.
Вариант 2
a=1,2м; b=0,8м; F1=1200Н; F2=500Н

Ступенчатый стальной брус (сталь Ст.3), жёстко закреплённый одним концом, находится под действием сосредоточенных нагрузок, направленных вдоль оси бруса.
Необходимо:
а) построить эпюры распределения продольных сил N и нормальных напряжений σ в сечениях бруса и дать заключение о прочности бруса;
б) определить абсолютные продольные удлинения (укорочения) ∆l участков и всего бруса и построить эпюру перемещений бруса.
Вариант 6
Модуль упругости E = 2,0∙105 Н/ мм2
k = 1.1; b = 0,5 м, F1=F=130,00 кН, F2=F/k=118,00 кН, F3=F/k=118,00 кН, A1=A/k 2182 мм2, A2=A·k = 2640 мм2, A3=A=2400 мм2.

Продольные силы, напряжения и перемещения при растяжении-сжатии
Сплошной ступенчатый брус нагружен силами P1, P2, P3, направленными вдоль его оси, как показано на рисунке 1.1.
Величина сил, длины участков L1, L2, L3, а также модуль упругости E и допускаемое напряжение [σ] указаны в таблице 1.1. Форма сечения А – квадрат со стороной b или круг диаметром d.
Построить эпюры продольных сил N, нормальных напряжений σ и продольных перемещений сечений бруса δ (деформации упругие). Найти размер сечения из расчета на прочность. Вычислить абсолютное смещение свободного торца и сравнить с [δ] допускаемым.
Вариант 5

Задача 5
Прямолинейный составной стержень жестко закреплен с одной стороны, а с другой стороны до абсолютно жесткой опоры существует зазор δ.
Стержень состоит из стальной части Ест = 2*105 МПа и латунной Ел = 1*105 МПа.
На стержень вдоль его оси действует нагрузка F.
Определить внутренние продольные силы и напряжения по участкам стержня.
Построить эпюры N и σ.
Дано: a=0,4 м, b=0,7 м, c=1,0 м, Aст=24см2, Aл=17см2, F=120 кН, δ=0,02 см, схема 0.

Задача 5. Выполнить проверочный расчет на прочность и построить эпюру осевых перемещений поперечных сечений ступенчатого стержня. Задано: сила Р = 50 кН, площадь поперечного сечения первого участка F1 = 8 см2, длина l = 0,3 м
Исходные данные: а1 = 1,5; а2 =2,5; а3 = 1,5; в1 = 1,5; в2 = 1,5; в3 = 2, в4 = F2/F1=0,75, алюминий, [σ] = 80МПа, Е = 7,1*104 МПа