Артикул: 1163667

Раздел:Технические дисциплины (107169 шт.) >
  Теоретическая механика (теормех, термех) (2134 шт.) >
  Кинематика (611 шт.) >
  Сложное движение точки (84 шт.)

Название или условие:
Задача 1
Найти в указанный момент времени абсолютные скорость и ускорение

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задача 1</b> <br />Найти в указанный момент времени абсолютные скорость и ускорение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Сложное движение точки
Прямоугольная пластина вращается по с угловой скоростью ω=4-8·t2 рад/с. По пластине вдоль прямой АС, движется точка М; закон ее относительного движения s = 16·t2+12t (см) . Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t=1/4 c, α=60°.
Вариант 20-5

По заданным уравнениям относительного движения точки S=S(t) по переносящему телу и угловой скорости ω= ω(t) этого тела, приведенными в табл. 2.1, найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1. Варианты расчетных схем изображены на рис. 2.1
Вариант 11-5

Сложное движение точки, пространственная траектория
Геометрическая фигура вращается вокруг оси, лежащей в ее плоскости. По каналу, расположенному на фигуре, движется точка M по известному закону AM(t) или BM(t) (в см). Найти абсолютную скорость и абсолютное ускорение точки при t = t1. Даны закон вращения фигуры ϕe(t) (или постоянная угловая скорость ωe), время t1 и размеры фигуры. Углы даны в рад, размеры — в см. Длина BM или AM — длина отрезка прямой или дуги окружности, AB — длина отрезка прямой.
Вариант 9

Найти в интервале времени 0 – 10 с уравнения движения тела М, считая его материальной точкой. Определить траекторию движения и зависимость скорости от времени.
Вариант 19

Задача К.3.
Сложное движение точки

Для приведенных схем определить значения абсолютной скорости и абсолютного ускорения в момент времени t1.
Вариант 17

Задача 8
Найти в указанный момент времени абсолютные скорость и ускорение

Задача 9
Найти в указанный момент времени абсолютные скорость и ускорение

Вариант №1
Судно испытывает бортовую качку согласно уравнению φe(t). Определить абсолютную скорость и абсолютное ускорение точки М лопасти гребного винта для указанного ее положения, которое соответствует моменту времени t1. Гребной винт вращается по закону φr(t). Положение 1 соответствует начальному моменту времени t0=0. Линейные размеры h и R заданы, p=π. Движение судна по курсу не учитывать. Изобразить на рисунке составляющие абсолютной скорости и абсолютного ускорения точки М.

ЗАДАЧА №4 Маховик диаметром d=1,4 м начав равноускоренное вращение из состояния покоя, за время Δt=4 мин приобрел частоту вращения n=580 мин-1. Определить окружную скорость, нормальное и касательное ускорение точек на ободе маховика в этот момент времени.По ободу диска радиуса r движется точка M. Уравнение движения задано в таблице; там же указано начало М0 и направление отсчёта дуговой координаты s. Положительное направление отсчёта – по ходу часовой стрелки, если смотреть навстречу оси z. Уравнение вращения диска задано в таблице. Положительным направлением вращения считается направление против хода часовой стрелки, если смотреть с положительного конца О1 оси ОО1. Для момента времени t1 =1 с определить абсолютную скорость и абсолютное ускорение точки M .
Вариант 422