Артикул: 1165947

Раздел:Технические дисциплины (109444 шт.) >
  Теоретическая механика (теормех, термех) (2291 шт.) >
  Кинематика (652 шт.) >
  Сложное движение точки (94 шт.)

Название или условие:
Вариант №10
Квадрат со стороной, равной R, вращается вокруг горизонтальной оси AB по закону φe(t). Из точки О по дуге окружности радиуса R движется точка М так, что расстояние ОМ меняется по закону OM=Sr=Sr(t). Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t1, если в этот момент квадрат расположен так, как указано на рисунке. Изобразить на рисунке составляющие абсолютной скорости и абсолютного ускорения точки М.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Вариант №10</b> <br />Квадрат со стороной, равной R, вращается вокруг горизонтальной оси AB по закону φe(t). Из точки О по дуге окружности радиуса R движется точка М так, что расстояние ОМ меняется по закону OM=Sr=Sr(t). Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t1, если в этот момент квадрат расположен так, как указано на рисунке. Изобразить на рисунке составляющие абсолютной скорости и абсолютного ускорения точки М.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задание 4. Сложное движение точкиПрямоугольная пластина вращается вокруг неподвижной оси по закону φ. По пластине вдоль прямой BD движется точка М. Закон ее относительного движения S.
Найти скорость и ускорение точки М в момент времени t1=1c.
Вариант АБВ = 342

Задача 5
Найти в указанный момент времени абсолютные скорость и ускорение

Задача 4
Найти в указанный момент времени абсолютные скорость и ускорение

Сложное движение точки
Прямоугольная пластина вращается по с угловой скоростью ω=4-8·t2 рад/с. По пластине вдоль прямой АС, движется точка М; закон ее относительного движения s = 16·t2+12t (см) . Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t=1/4 c, α=60°.
Вариант 20-5

Задача 8
Найти в указанный момент времени абсолютные скорость и ускорение

Вариант №1
Судно испытывает бортовую качку согласно уравнению φe(t). Определить абсолютную скорость и абсолютное ускорение точки М лопасти гребного винта для указанного ее положения, которое соответствует моменту времени t1. Гребной винт вращается по закону φr(t). Положение 1 соответствует начальному моменту времени t0=0. Линейные размеры h и R заданы, p=π. Движение судна по курсу не учитывать. Изобразить на рисунке составляющие абсолютной скорости и абсолютного ускорения точки М.

Задание №6. Определите абсолютную скорость и абсолютное ускорение точки.
1. Определяем положение механической системы
2. Показываем положение механической системы
33. Определяем переносную скорость точки
4. Определяем относительную скорость точки
5. Показываем векторы скоростей
6. Определяем абсолютную скорость точки.
7. Определяем переносное ускорение точки.
8 Определяем относительное ускорение точки
9 Определяем кориолисово ускорение точки.
10. Показываем векторы ускорений
11. Определяем абсолютное ускорение точки.
|AB| = 3,5 м; |AM| = 2,27 м; VM = 0,69 м/с; aM = 0,27 м/с2; ωAB = 0,039 с-1; MPAB = 17,87 м; aMX = -0,14 м/с2; β = 11°

Сложное движение точки, пространственная траектория
Геометрическая фигура вращается вокруг оси, лежащей в ее плоскости. По каналу, расположенному на фигуре, движется точка M по известному закону AM(t) или BM(t) (в см). Найти абсолютную скорость и абсолютное ускорение точки при t = t1. Даны закон вращения фигуры ϕe(t) (или постоянная угловая скорость ωe), время t1 и размеры фигуры. Углы даны в рад, размеры — в см. Длина BM или AM — длина отрезка прямой или дуги окружности, AB — длина отрезка прямой.
Вариант 8

Задача 2
Найти в указанный момент времени абсолютные скорость и ускорение

Кольцо М находится одновременно на стержне ОА и железном кольце радиуса 60 см. Стержень ОА вращается вокруг оси, проходящей через точку О с постоянной угловой скоростью ω = 5 сек-1, и заставляет кольцо скользить по окружности.
Найти абсолютное ускорение колечка М в положении, указанном на чертеже, если ОС = 30 см. (С – центр окружности)