Артикул: 1163674

Раздел:Технические дисциплины (107176 шт.) >
  Теоретическая механика (теормех, термех) (2141 шт.) >
  Кинематика (618 шт.) >
  Сложное движение точки (91 шт.)

Название или условие:
Задача 10
Найти в указанный момент времени абсолютные скорость и ускорение

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задача 10</b> <br />Найти в указанный момент времени абсолютные скорость и ускорение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача 9
Найти в указанный момент времени абсолютные скорость и ускорение

Сложное движение точки
Прямоугольная пластина вращается по с угловой скоростью ω=4-8·t2 рад/с. По пластине вдоль прямой АС, движется точка М; закон ее относительного движения s = 16·t2+12t (см) . Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t=1/4 c, α=60°.
Вариант 20-5

Вариант №10
Квадрат со стороной, равной R, вращается вокруг горизонтальной оси AB по закону φe(t). Из точки О по дуге окружности радиуса R движется точка М так, что расстояние ОМ меняется по закону OM=Sr=Sr(t). Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t1, если в этот момент квадрат расположен так, как указано на рисунке. Изобразить на рисунке составляющие абсолютной скорости и абсолютного ускорения точки М.

По окружности радиуса R катится колесо радиуса r, ось которого наклонена под углом α к горизонту. Скорость центра колеса Vc. Найдите величину вектора угловой скорости колеса ω.
Определение абсолютной скорости и абсолютного ускорения точки
Точка М движется заданным образом (см. рисунок К-3) в подвижной системе отсчета, движение которой, в свою очередь, задано (законы OM = s(t) и φ(t) или φ1(t) и φ2(t) известны). Для момента времени t1 найти скоростьVM и ускорение WM.
Вариант 6
Дано: a = 40 см, α = 30°, S = ОМ = asin(πt/3), φ = t3-5t, t = 0.5 c

Задание 4. Сложное движение точкиПрямоугольная пластина вращается вокруг неподвижной оси по закону φ. По пластине вдоль прямой BD движется точка М. Закон ее относительного движения S.
Найти скорость и ускорение точки М в момент времени t1=1c.
Вариант АБВ = 342

Сложное движение точки, пространственная траектория
Геометрическая фигура вращается вокруг оси, лежащей в ее плоскости. По каналу, расположенному на фигуре, движется точка M по известному закону AM(t) или BM(t) (в см). Найти абсолютную скорость и абсолютное ускорение точки при t = t1. Даны закон вращения фигуры ϕe(t) (или постоянная угловая скорость ωe), время t1 и размеры фигуры. Углы даны в рад, размеры — в см. Длина BM или AM — длина отрезка прямой или дуги окружности, AB — длина отрезка прямой.
Вариант 9

ЗАДАЧА №4 Маховик диаметром d=1,4 м начав равноускоренное вращение из состояния покоя, за время Δt=4 мин приобрел частоту вращения n=580 мин-1. Определить окружную скорость, нормальное и касательное ускорение точек на ободе маховика в этот момент времени.
По заданным уравнениям относительного движения точки S=S(t) по переносящему телу и угловой скорости ω= ω(t) этого тела, приведенными в табл. 2.1, найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1. Варианты расчетных схем изображены на рис. 2.1
Вариант 11-5

Задача К.3.
Сложное движение точки

Для приведенных схем определить значения абсолютной скорости и абсолютного ускорения в момент времени t1.
Вариант 17