Артикул: 1163671

Раздел:Технические дисциплины (107173 шт.) >
  Теоретическая механика (теормех, термех) (2138 шт.) >
  Кинематика (615 шт.) >
  Сложное движение точки (88 шт.)

Название или условие:
Задача 6
Найти в указанный момент времени абсолютные скорость и ускорение

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задача 6</b> <br />Найти в указанный момент времени абсолютные скорость и ускорение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задание №6. Определите абсолютную скорость и абсолютное ускорение точки.
1. Определяем положение механической системы
2. Показываем положение механической системы
33. Определяем переносную скорость точки
4. Определяем относительную скорость точки
5. Показываем векторы скоростей
6. Определяем абсолютную скорость точки.
7. Определяем переносное ускорение точки.
8 Определяем относительное ускорение точки
9 Определяем кориолисово ускорение точки.
10. Показываем векторы ускорений
11. Определяем абсолютное ускорение точки.
|AB| = 3,5 м; |AM| = 2,27 м; VM = 0,69 м/с; aM = 0,27 м/с2; ωAB = 0,039 с-1; MPAB = 17,87 м; aMX = -0,14 м/с2; β = 11°

Найти в интервале времени 0 – 10 с уравнения движения тела М, считая его материальной точкой. Определить траекторию движения и зависимость скорости от времени.
Вариант 19

Задача 4
Найти в указанный момент времени абсолютные скорость и ускорение

По заданным уравнениям относительного движения точки S=S(t) по переносящему телу и угловой скорости ω= ω(t) этого тела, приведенными в табл. 2.1, найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1. Варианты расчетных схем изображены на рис. 2.1
Вариант 11-5

По окружности радиуса R катится колесо радиуса r, ось которого наклонена под углом α к горизонту. Скорость центра колеса Vc. Найдите величину вектора угловой скорости колеса ω.
Задача К.3.
Сложное движение точки

Для приведенных схем определить значения абсолютной скорости и абсолютного ускорения в момент времени t1.
Вариант 17

Сложное движение точки, пространственная траектория
Геометрическая фигура вращается вокруг оси, лежащей в ее плоскости. По каналу, расположенному на фигуре, движется точка M по известному закону AM(t) или BM(t) (в см). Найти абсолютную скорость и абсолютное ускорение точки при t = t1. Даны закон вращения фигуры ϕe(t) (или постоянная угловая скорость ωe), время t1 и размеры фигуры. Углы даны в рад, размеры — в см. Длина BM или AM — длина отрезка прямой или дуги окружности, AB — длина отрезка прямой.
Вариант 9

Сложное движение точки, пространственная траектория
Геометрическая фигура вращается вокруг оси, лежащей в ее плоскости. По каналу, расположенному на фигуре, движется точка M по известному закону AM(t) или BM(t) (в см). Найти абсолютную скорость и абсолютное ускорение точки при t = t1. Даны закон вращения фигуры ϕe(t) (или постоянная угловая скорость ωe), время t1 и размеры фигуры. Углы даны в рад, размеры — в см. Длина BM или AM — длина отрезка прямой или дуги окружности, AB — длина отрезка прямой.
Вариант 8

Вариант №10
Квадрат со стороной, равной R, вращается вокруг горизонтальной оси AB по закону φe(t). Из точки О по дуге окружности радиуса R движется точка М так, что расстояние ОМ меняется по закону OM=Sr=Sr(t). Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t1, если в этот момент квадрат расположен так, как указано на рисунке. Изобразить на рисунке составляющие абсолютной скорости и абсолютного ускорения точки М.

Задача 3
Найти в указанный момент времени абсолютные скорость и ускорение