Артикул: 1163670

Раздел:Технические дисциплины (107172 шт.) >
  Теоретическая механика (теормех, термех) (2137 шт.) >
  Кинематика (614 шт.) >
  Сложное движение точки (87 шт.)

Название или условие:
Задача 5
Найти в указанный момент времени абсолютные скорость и ускорение

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задача 5</b> <br />Найти в указанный момент времени абсолютные скорость и ускорение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

По заданным уравнениям относительного движения точки S=S(t) по переносящему телу и угловой скорости ω= ω(t) этого тела, приведенными в табл. 2.1, найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1. Варианты расчетных схем изображены на рис. 2.1
Вариант 11-5

Задача 6
Найти в указанный момент времени абсолютные скорость и ускорение

Задача 23.31.
Шайба М движется по горизонтальному стержню ОА, так что ОМ=0,5t2 см. В то же время стержень вращается вокруг вертикальной оси, проходящей через точку О, по закону φ=t2+t. Определить радиальную и трансверсальную составляющие абсолютной скорости и абсолютного ускорения шайбы в момент t= 2 сек.

Задача 3
Найти в указанный момент времени абсолютные скорость и ускорение

Дано: φ = 4(t2 - t), рад
S = ОМ = 40(3t2 + t), см
t = 1 c
Пластинка вращается по заданному уравнению φ = φ(t). По пластинке вдоль прямой ОМ (сторона квадратной пластины а = 40 см) или радиусу R (R = 40 cм) движется точка М. Движение точки М задано уравнениями S(t) = OM(t). Вычислить для точки М:
- абсолютную скорость в момент времени t = 1 c, показать на рисунке векторы относительной, переносной и абсолютной скоростей
- абсолютное ускорение в момент времени t = 1 c, показать на рисунке направление векторов относительного, переносного ускорений, а также ускорения Кориолиса.
Функциональные зависимости φ = φ(t) в радианах заданы в таблице, фигурные пластинки и уравнение движения точки ОМ = ОМ(t) в сантиметрах заданы в таблице.

Дано: R = 60 см; φ= 5t- 4t2 ; S = ∪AM = π/2R(t3 - 2t2) (см); l = (3/4)R ; t1 = 1 c. Найти: υабс ; aабс
По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 4πt2 см
xe = t3 + 4t
t1 = 2 c
R = 48 см
(задача К-7, вариант 30)

Найти в интервале времени 0 – 10 с уравнения движения тела М, считая его материальной точкой. Определить траекторию движения и зависимость скорости от времени.
Вариант 19

Сложное движение точки, пространственная траектория
Геометрическая фигура вращается вокруг оси, лежащей в ее плоскости. По каналу, расположенному на фигуре, движется точка M по известному закону AM(t) или BM(t) (в см). Найти абсолютную скорость и абсолютное ускорение точки при t = t1. Даны закон вращения фигуры ϕe(t) (или постоянная угловая скорость ωe), время t1 и размеры фигуры. Углы даны в рад, размеры — в см. Длина BM или AM — длина отрезка прямой или дуги окружности, AB — длина отрезка прямой.
Вариант 9

Определение абсолютной скорости и абсолютного ускорения точки
Точка М движется заданным образом (см. рисунок К-3) в подвижной системе отсчета, движение которой, в свою очередь, задано (законы OM = s(t) и φ(t) или φ1(t) и φ2(t) известны). Для момента времени t1 найти скоростьVM и ускорение WM.
Вариант 6
Дано: a = 40 см, α = 30°, S = ОМ = asin(πt/3), φ = t3-5t, t = 0.5 c