Артикул: 1137328

Раздел:Технические дисциплины (84469 шт.) >
  Теоретическая механика (теормех, термех) (1861 шт.) >
  Кинематика (542 шт.) >
  Сложное движение точки (73 шт.)

Название или условие:
Задача 3.12.3
Определить скорость и ускорение точки в заданный момент времени

Описание:
Подробное решение в WORD - 4 страницы (скан)

Изображение предварительного просмотра:

<b>Задача 3.12.3</b><br />Определить скорость и ускорение точки в заданный момент времени

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача 1
Найти в указанный момент времени абсолютные скорость и ускорение

Задача К3. Прямоугольная пластина вращается вокруг неподвижной оси с постоянной угловой скоростью ω. Ось вращения перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости).
По пластине вдоль прямой BD движется точка М. Закон ее относительного движения s=AM=f(t) (s – в см , t – в сек) задан в таблице. Точка М показана в положении, при котором s=AM> (при s<0 точка М находится по другую сторону от точки А).
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.

Задача 5
Найти в указанный момент времени абсолютные скорость и ускорение

Определение абсолютной скорости и абсолютного ускорения точки
Точка М движется заданным образом (см. рисунок К-3) в подвижной системе отсчета, движение которой, в свою очередь, задано (законы OM = s(t) и φ(t) или φ1(t) и φ2(t) известны). Для момента времени t1 найти скоростьVM и ускорение WM.
Вариант 6
Дано: a = 40 см, α = 30°, S = ОМ = asin(πt/3), φ = t3-5t, t = 0.5 c

Сложное движение точки
Прямоугольная пластина вращается по с угловой скоростью ω=4-8·t2 рад/с. По пластине вдоль прямой АС, движется точка М; закон ее относительного движения s = 16·t2+12t (см) . Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t=1/4 c, α=60°.
Вариант 20-5

Задание 4. Сложное движение точкиПрямоугольная пластина вращается вокруг неподвижной оси по закону φ. По пластине вдоль прямой BD движется точка М. Закон ее относительного движения S.
Найти скорость и ускорение точки М в момент времени t1=1c.
Вариант АБВ = 342

По окружности радиуса R катится колесо радиуса r, ось которого наклонена под углом α к горизонту. Скорость центра колеса Vc. Найдите величину вектора угловой скорости колеса ω.
Задача 4
Найти в указанный момент времени абсолютные скорость и ускорение

По заданным уравнениям относительного движения точки М и переносного движения тела D определить для момента времени t=t1 абсолютную скорость и абсолютное ускорение точки M.
Дано:
OM = Sr(t) = 8cos(πt/2)
φе(t) = -2πt2 рад
t1 = 3/2c
α = 45°
(задача К-7, вариант 26)

Дано: φ = 4(t2 - t), рад
S = ОМ = 40(3t2 + t), см
t = 1 c
Пластинка вращается по заданному уравнению φ = φ(t). По пластинке вдоль прямой ОМ (сторона квадратной пластины а = 40 см) или радиусу R (R = 40 cм) движется точка М. Движение точки М задано уравнениями S(t) = OM(t). Вычислить для точки М:
- абсолютную скорость в момент времени t = 1 c, показать на рисунке векторы относительной, переносной и абсолютной скоростей
- абсолютное ускорение в момент времени t = 1 c, показать на рисунке направление векторов относительного, переносного ускорений, а также ускорения Кориолиса.
Функциональные зависимости φ = φ(t) в радианах заданы в таблице, фигурные пластинки и уравнение движения точки ОМ = ОМ(t) в сантиметрах заданы в таблице.