Артикул: 1114225

Раздел:Технические дисциплины (72234 шт.) >
  Теоретическая механика (теормех, термех) (1817 шт.) >
  Кинематика (531 шт.) >
  Сложное движение точки (69 шт.)

Название или условие:
Дано: φ = 4(t2 - t), рад
S = ОМ = 40(3t2 + t), см
t = 1 c
Пластинка вращается по заданному уравнению φ = φ(t). По пластинке вдоль прямой ОМ (сторона квадратной пластины а = 40 см) или радиусу R (R = 40 cм) движется точка М. Движение точки М задано уравнениями S(t) = OM(t). Вычислить для точки М:
- абсолютную скорость в момент времени t = 1 c, показать на рисунке векторы относительной, переносной и абсолютной скоростей
- абсолютное ускорение в момент времени t = 1 c, показать на рисунке направление векторов относительного, переносного ускорений, а также ускорения Кориолиса.
Функциональные зависимости φ = φ(t) в радианах заданы в таблице, фигурные пластинки и уравнение движения точки ОМ = ОМ(t) в сантиметрах заданы в таблице.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Дано:  φ = 4(t<sup>2</sup> - t), рад <br /> S = ОМ = 40(3t<sup>2</sup> + t), см <br /> t = 1 c <br /> Пластинка вращается по заданному уравнению φ = φ(t). По пластинке вдоль прямой ОМ (сторона квадратной пластины а = 40 см) или радиусу R (R = 40 cм) движется точка М. Движение точки М задано уравнениями S(t) = OM(t). Вычислить для точки М: <br /> - абсолютную скорость в момент времени t = 1 c, показать на рисунке векторы относительной, переносной и абсолютной скоростей <br /> - абсолютное ускорение в момент времени t = 1 c, показать на рисунке направление векторов относительного, переносного ускорений, а также ускорения Кориолиса. <br /> Функциональные зависимости φ = φ(t) в радианах заданы в таблице, фигурные пластинки и уравнение движения точки ОМ  = ОМ(t) в сантиметрах заданы в таблице.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача 3.12.3
Определить скорость и ускорение точки в заданный момент времени

Задача 6
Найти в указанный момент времени абсолютные скорость и ускорение

Задача 2
Найти в указанный момент времени абсолютные скорость и ускорение

ЗАДАЧА №4 Маховик диаметром d=1,4 м начав равноускоренное вращение из состояния покоя, за время Δt=4 мин приобрел частоту вращения n=580 мин-1. Определить окружную скорость, нормальное и касательное ускорение точек на ободе маховика в этот момент времени.
Сложное движение точки, пространственная траектория
Геометрическая фигура вращается вокруг оси, лежащей в ее плоскости. По каналу, расположенному на фигуре, движется точка M по известному закону AM(t) или BM(t) (в см). Найти абсолютную скорость и абсолютное ускорение точки при t = t1. Даны закон вращения фигуры ϕe(t) (или постоянная угловая скорость ωe), время t1 и размеры фигуры. Углы даны в рад, размеры — в см. Длина BM или AM — длина отрезка прямой или дуги окружности, AB — длина отрезка прямой.
Вариант 8

Задача 9
Найти в указанный момент времени абсолютные скорость и ускорение

Задача 8
Найти в указанный момент времени абсолютные скорость и ускорение

По ободу диска радиуса r движется точка M. Уравнение движения задано в таблице; там же указано начало М0 и направление отсчёта дуговой координаты s. Положительное направление отсчёта – по ходу часовой стрелки, если смотреть навстречу оси z. Уравнение вращения диска задано в таблице. Положительным направлением вращения считается направление против хода часовой стрелки, если смотреть с положительного конца О1 оси ОО1. Для момента времени t1 =1 с определить абсолютную скорость и абсолютное ускорение точки M .
Вариант 422

По окружности радиуса R катится колесо радиуса r, ось которого наклонена под углом α к горизонту. Скорость центра колеса Vc. Найдите величину вектора угловой скорости колеса ω.
Задача К3. Прямоугольная пластина вращается вокруг неподвижной оси с постоянной угловой скоростью ω. Ось вращения перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости).
По пластине вдоль прямой BD движется точка М. Закон ее относительного движения s=AM=f(t) (s – в см , t – в сек) задан в таблице. Точка М показана в положении, при котором s=AM> (при s<0 точка М находится по другую сторону от точки А).
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.