Артикул: 1156093

Раздел:Технические дисциплины (100271 шт.) >
  Математика (32764 шт.) >
  Теория вероятности (4266 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (2760 шт.)

Название или условие:
В урне 5 желтых, 8 красных и 7 зеленых шаров. Из урны наудачу поочередно извлекают по одному шару и выкладывают их на столе, причем второй шар кладут под первым, а третий под вторым. Найти вероятность того, что на столе получится «светофор».

Описание:
Подробное решение в WORD

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Вычислить вероятность того, что при бросании двух игральных костей сумма очков на верхних гранях будет равна 8, если известно, что разность меньше 3.Три станка работают независимо друг от друга. Вероятность того, что не потребует наладки I станок, равна 0,9; II станок – 0,6; III станок – 0,7. Вычислить вероятность того, что только один станок потребует наладки; хотя бы один станок потребует наладки.
Случайная величина X задана функцией распределения. Найти: плотность вероятности f(x), вероятность попадания случайной величины в интервал (-1;1), среднеквадратическое отклонение Х. Построить графики плотности распределения и функции распределения.
В урне лежит 7 шаров, из них 2 белых. Вынимают 4 шара. Найти закон распределения, математическое ожидание, дисперсию и среднее квадратическое отклонение числа Х вынутых белых шаров. Построить график функции распределения Х
Заданы среднее квадратическое отклонение σ=2 нормальной распределенной случайной величины Х, выборочная средняя Xв и объем выборки n=16.
Требуется:
1) найти доверительный интервал для оценки неизвестного математического ожидания а с доверительной вероятностью γ=0,95;
2) принимая α≈Xв , написать теоретическую плотность распределения вероятностей и схематично построить ее график;
3) следуя правилу «трех сигм», определить приближенно максимальное и минимальное значения случайной величины Х;
4) оценить вероятность того, что Х примет значение, превышающее β=19.
В результате опыта получена выборочная совокупность.
1. По данной таблице составить интервальный вариационный ряд, разбив всю вариацию на 8-10 интервалов.
2. По сгруппированным данным построить:
а) полигон относительных частот;
б) гистограмму относительных частот;
в) график эмпирической функции распределения.
3. Найти числовые характеристики выборочной совокупности: выборочную среднюю x ̅В, выборочную дисперсию DВ, выборочное среднее квадратическое отклонение σВ и исправленную дисперсию S2.
4. По виду гистограммы и эмпирической функции распределения выборки выдвинуть гипотезу о распределении генеральной совокупности.
5. Проверить выполнения правила “трёх сигм”.
6. Применив критерий согласия Пирсона χ2 с заданным уровнем значимости α, окончательно принять или опровергнуть выдвинутую гипотезу о распределении генеральной совокупности.
7. Найти доверительные интервалы для генеральной средней и генерального среднего квадратического отклонения по уровню надёжности γ.
9. α=0,05; γ=0,95
Вариант 9

Утверждается, что результат действия лекарства зависит от способа его применения. Проверить это утверждение при α = 0,05 по следующим данным:
Считается, что новое антикоррозийное покрытие имеет эффективность 99%, если среди 20 испытанных образов нет ни одного с признаками коррозии; в противном случае эффективность покрытия принимается равной 90%. Пусть р – вероятность появления признаков коррозии у одного образца. Предположим, что образцы обрабатываются и испытываются независимо один от другого. Рассмотрим нулевую гипотезу Н0: р = 0,10. Ответить на следующие вопросы:
а) Какая статистика критерия используется в задаче, каковы ее распределение и область применения?
б) Какова критическая область критерия?
в) В чем состоят ошибки первого и второго рода и чему равны их вероятности?
Случайная величина X – цена на товар задана с помощью функции следующего вида:
Покупательский спрос на товар Y определяется формулой Y=25-3X. Найти среднее ожидаемое значение и дисперсию покупательского спроса на товар.

В первом ящике из 14 ламп 3 неисправны, во втором – из 10 ламп одна неисправная. Какова вероятность извлечь из наугад выбранного ящика исправную лампу?