Артикул: 1164349

Раздел:Технические дисциплины (107851 шт.) >
  Математика (32829 шт.) >
  Теория вероятности (4280 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (2774 шт.)

Название или условие:
В урне лежит 7 шаров, из них 2 белых. Вынимают 4 шара. Найти закон распределения, математическое ожидание, дисперсию и среднее квадратическое отклонение числа Х вынутых белых шаров. Построить график функции распределения Х

Описание:
Подробное решение в WORD

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Случайная величина X – цена на товар задана с помощью функции следующего вида:
Покупательский спрос на товар Y определяется формулой Y=25-3X. Найти среднее ожидаемое значение и дисперсию покупательского спроса на товар.

Считается, что новое антикоррозийное покрытие имеет эффективность 99%, если среди 20 испытанных образов нет ни одного с признаками коррозии; в противном случае эффективность покрытия принимается равной 90%. Пусть р – вероятность появления признаков коррозии у одного образца. Предположим, что образцы обрабатываются и испытываются независимо один от другого. Рассмотрим нулевую гипотезу Н0: р = 0,10. Ответить на следующие вопросы:
а) Какая статистика критерия используется в задаче, каковы ее распределение и область применения?
б) Какова критическая область критерия?
в) В чем состоят ошибки первого и второго рода и чему равны их вероятности?
Команда состоит из трех баскетболистов. Вероятность попадания в кольцо для первого баскетболиста равна 0,8, для второго баскетболиста она равна 0,9, и третий баскетболист попадает в кольцо с вероятностью 0,7. Баскетболисты бросили в корзину по одному мячу. За каждое попадание в корзину начисляется 15 у.е. Составить закон распределения числа начисленных баскетболистам у.е. Найти вероятность того, что баскетболисты наберут не менее 20 у.е.В цехе работают 7 мужчин и 3 женщины. По табельным номерам наудачу отобрано 2 человека. Дискретная случайная величина – число мужчин среди отобранных. Найти: ряд распределения, числовые характеристики, функцию распределения F(x). Построить график F(x).
Три станка работают независимо друг от друга. Вероятность того, что не потребует наладки I станок, равна 0,9; II станок – 0,6; III станок – 0,7. Вычислить вероятность того, что только один станок потребует наладки; хотя бы один станок потребует наладки. Отношение зрителей к включению одной из телепередач в программу выразилось следующими данными
Можно ли считать, что отношение к включению данной передачи в программу не зависит от пола зрителя? Принять α = 0,10.

В результате опыта получена выборочная совокупность.
1. По данной таблице составить интервальный вариационный ряд, разбив всю вариацию на 8-10 интервалов.
2. По сгруппированным данным построить:
а) полигон относительных частот;
б) гистограмму относительных частот;
в) график эмпирической функции распределения.
3. Найти числовые характеристики выборочной совокупности: выборочную среднюю x ̅В, выборочную дисперсию DВ, выборочное среднее квадратическое отклонение σВ и исправленную дисперсию S2.
4. По виду гистограммы и эмпирической функции распределения выборки выдвинуть гипотезу о распределении генеральной совокупности.
5. Проверить выполнения правила “трёх сигм”.
6. Применив критерий согласия Пирсона χ2 с заданным уровнем значимости α, окончательно принять или опровергнуть выдвинутую гипотезу о распределении генеральной совокупности.
7. Найти доверительные интервалы для генеральной средней и генерального среднего квадратического отклонения по уровню надёжности γ.
9. α=0,05; γ=0,95
Вариант 9

Два баскетболиста делают по три броска мячом в корзину. Вероятности попадания мяча при каждом броске равны соответственно 0,8 и 0,6. Найти вероятность того, что у первого будет больше попаданий, чем у второго.
Имеются две партии изделий по 12 и 15 штук, причем в каждой партии одно изделие бракованное. Изделие, взятое наудачу из первой партии, переложено во вторую, после чего выбирается наудачу изделие из второй партии. Определить вероятность того, что из второй партии извлечено бракованное изделие.Исследователями психологов установлено, что мужчины и женщины по-разному реагируют на некоторые жизненные обстоятельства. Результаты исследований показали, что 70% женщин позитивно реагируют на эти ситуации, в то время как 40% мужчин реагируют на них негативно. 20 женщин и 15 мужчин заполнили анкету, в которой отразили свое отношение к данной ситуации. Случайно извлеченная анкета содержит негативную реакцию. Чему равна вероятность того, что ее заполнял мужчина?