Артикул: 1156099

Раздел:Технические дисциплины (100272 шт.) >
  Математика (32764 шт.) >
  Теория вероятности (4266 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (2760 шт.)

Название или условие:
Среди поступающих на сборку деталей с первого автомата 0,1% брака, со второго – 0,2%, с третьего – 0,25%. Производительности их относятся как 5:3:3. Найти вероятность того, взятая наудачу деталь окажется бракованной.

Описание:
Подробное решение в WORD

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Команда состоит из трех баскетболистов. Вероятность попадания в кольцо для первого баскетболиста равна 0,8, для второго баскетболиста она равна 0,9, и третий баскетболист попадает в кольцо с вероятностью 0,7. Баскетболисты бросили в корзину по одному мячу. За каждое попадание в корзину начисляется 15 у.е. Составить закон распределения числа начисленных баскетболистам у.е. Найти вероятность того, что баскетболисты наберут не менее 20 у.е.Задана непрерывная случайная величина Χ функцией распределения F(х). Требуется:
1) найти плотность распределения вероятностей f(x);
2) схематично построить графики функций f(x) и F(х);
3) найти математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины Х;
4) найти вероятность того, что Х примет значение из интервала (α;β).
Вариант 1

Случайная величина X задана функцией распределения. Найти: плотность вероятности f(x), вероятность попадания случайной величины в интервал (-1;1), среднеквадратическое отклонение Х. Построить графики плотности распределения и функции распределения.
Дневная добыча угля в некоторой шахте распределена по нормальному закону с математическим ожиданием 785 т и стандартным отклонением 60 т. а) Найдите вероятность того, что в определенный день будут добыты, по крайней мере 800 т угля; б) Определите долю рабочих дней, в которые будет добыто от 750 до 850 т угля.
В цехе работают 7 мужчин и 3 женщины. По табельным номерам наудачу отобрано 2 человека. Дискретная случайная величина – число мужчин среди отобранных. Найти: ряд распределения, числовые характеристики, функцию распределения F(x). Построить график F(x).35% всех кошек – рыжие, 15% – белые, 10% – черные, а остальные – пестрые. Найти вероятность того, что три наудачу взятые кошки одинакового окраса.
Случайная величина X – цена на товар задана с помощью функции следующего вида:
Покупательский спрос на товар Y определяется формулой Y=25-3X. Найти среднее ожидаемое значение и дисперсию покупательского спроса на товар.

В результате опыта получена выборочная совокупность.
1. По данной таблице составить интервальный вариационный ряд, разбив всю вариацию на 8-10 интервалов.
2. По сгруппированным данным построить:
а) полигон относительных частот;
б) гистограмму относительных частот;
в) график эмпирической функции распределения.
3. Найти числовые характеристики выборочной совокупности: выборочную среднюю x ̅В, выборочную дисперсию DВ, выборочное среднее квадратическое отклонение σВ и исправленную дисперсию S2.
4. По виду гистограммы и эмпирической функции распределения выборки выдвинуть гипотезу о распределении генеральной совокупности.
5. Проверить выполнения правила “трёх сигм”.
6. Применив критерий согласия Пирсона χ2 с заданным уровнем значимости α, окончательно принять или опровергнуть выдвинутую гипотезу о распределении генеральной совокупности.
7. Найти доверительные интервалы для генеральной средней и генерального среднего квадратического отклонения по уровню надёжности γ.
9. α=0,05; γ=0,95
Вариант 9

Вычислить вероятность того, что при бросании двух игральных костей сумма очков на верхних гранях будет равна 8, если известно, что разность меньше 3.Три станка работают независимо друг от друга. Вероятность того, что не потребует наладки I станок, равна 0,9; II станок – 0,6; III станок – 0,7. Вычислить вероятность того, что только один станок потребует наладки; хотя бы один станок потребует наладки.