Артикул: 1164342

Раздел:Технические дисциплины (107844 шт.) >
  Математика (32822 шт.) >
  Теория вероятности (4273 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (2767 шт.)

Название или условие:
Вычислить вероятность того, что при бросании двух игральных костей сумма очков на верхних гранях будет равна 8, если известно, что разность меньше 3.

Описание:
Подробное решение в WORD

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

В партии из 10 деталей 6 бракованных. Определить вероятность того, что среди выбранных наудачу 5 изделий ровно 2 окажутся бракованнымиДаны результаты выборочных наблюдений случайной величины. Найти несмещенные оценки математического ожидания, дисперсии и среднего квадратического отклонения. Считая случайно величину нормально распределенной, с надежностью 0,95 найти интервальную оценку для ее математического ожидания при известном среднем квадратическом отклонении (σ=2) и при неизвестном среднем квадратическом отклонении
Закон распределения случайной величины X определяется (см. рис.)
Вычислить математическое ожидание и дисперсию случайной величины X, найти функцию распределения случайной величины Y, если Y=|X+1|.

Отношение зрителей к включению одной из телепередач в программу выразилось следующими данными
Можно ли считать, что отношение к включению данной передачи в программу не зависит от пола зрителя? Принять α = 0,10.

Проверка функционирования устройства осуществляется специальным тестом. Если устройство функционирует правильно, то вероятность прохождения теста равна 0,99; в противном случае вероятность прохождения теста равна 0,40. Устройство допускается к работе, если тест проходит 5 раз подряд.
В предположении, что число прохождений теста подчиняется биномиальному распределению, ответить на следующие вопросы:
а) Какова область изменения и критическая область статистики критерия? Какое распределение имеет статистика критерия?
б) Как сформулировать нулевую гипотезу, если ошибка первого рода состоит в отклонении правильно функционирующего устройства?
в) Какова альтернативная гипотеза и в чем состоит ошибка второго рода?
г) Чему равны вероятности ошибок первого и второго рода?
Заданы среднее квадратическое отклонение σ=2 нормальной распределенной случайной величины Х, выборочная средняя Xв и объем выборки n=16.
Требуется:
1) найти доверительный интервал для оценки неизвестного математического ожидания а с доверительной вероятностью γ=0,95;
2) принимая α≈Xв , написать теоретическую плотность распределения вероятностей и схематично построить ее график;
3) следуя правилу «трех сигм», определить приближенно максимальное и минимальное значения случайной величины Х;
4) оценить вероятность того, что Х примет значение, превышающее β=19.
Имеются две партии изделий по 12 и 15 штук, причем в каждой партии одно изделие бракованное. Изделие, взятое наудачу из первой партии, переложено во вторую, после чего выбирается наудачу изделие из второй партии. Определить вероятность того, что из второй партии извлечено бракованное изделие.Два баскетболиста делают по три броска мячом в корзину. Вероятности попадания мяча при каждом броске равны соответственно 0,8 и 0,6. Найти вероятность того, что у первого будет больше попаданий, чем у второго.
В урне лежит 7 шаров, из них 2 белых. Вынимают 4 шара. Найти закон распределения, математическое ожидание, дисперсию и среднее квадратическое отклонение числа Х вынутых белых шаров. Построить график функции распределения ХВ урне 5 желтых, 8 красных и 7 зеленых шаров. Из урны наудачу поочередно извлекают по одному шару и выкладывают их на столе, причем второй шар кладут под первым, а третий под вторым. Найти вероятность того, что на столе получится «светофор».