Артикул: 1162737

Раздел:Технические дисциплины (106260 шт.) >
  Математика (32800 шт.) >
  Теория вероятности (4268 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (2762 шт.)

Название или условие:
В результате опыта получена выборочная совокупность.
1. По данной таблице составить интервальный вариационный ряд, разбив всю вариацию на 8-10 интервалов.
2. По сгруппированным данным построить:
а) полигон относительных частот;
б) гистограмму относительных частот;
в) график эмпирической функции распределения.
3. Найти числовые характеристики выборочной совокупности: выборочную среднюю x ̅В, выборочную дисперсию DВ, выборочное среднее квадратическое отклонение σВ и исправленную дисперсию S2.
4. По виду гистограммы и эмпирической функции распределения выборки выдвинуть гипотезу о распределении генеральной совокупности.
5. Проверить выполнения правила “трёх сигм”.
6. Применив критерий согласия Пирсона χ2 с заданным уровнем значимости α, окончательно принять или опровергнуть выдвинутую гипотезу о распределении генеральной совокупности.
7. Найти доверительные интервалы для генеральной средней и генерального среднего квадратического отклонения по уровню надёжности γ.
9. α=0,05; γ=0,95
Вариант 9

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

В результате опыта получена выборочная совокупность. <br />1. По данной таблице составить интервальный вариационный ряд, разбив всю вариацию на 8-10 интервалов. <br />2. По сгруппированным данным построить: <br />а) полигон относительных частот; <br />б) гистограмму относительных частот; <br />в) график эмпирической функции распределения. <br />3. Найти числовые характеристики выборочной совокупности: выборочную среднюю x ̅<sub>В</sub>, выборочную дисперсию D<sub>В</sub>, выборочное среднее квадратическое отклонение  σ<sub>В</sub> и исправленную дисперсию S<sup>2</sup>. <br />4. По виду гистограммы и эмпирической функции распределения выборки выдвинуть гипотезу о распределении генеральной совокупности. <br />5. Проверить выполнения правила “трёх сигм”. <br />6. Применив критерий согласия Пирсона χ<sup>2</sup> с заданным уровнем значимости α, окончательно принять или опровергнуть выдвинутую гипотезу о распределении генеральной совокупности. <br />7. Найти доверительные интервалы для генеральной средней и генерального среднего квадратического отклонения по уровню надёжности γ. <br />9. α=0,05;  γ=0,95 <br /><b>Вариант 9</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

В цехе работают 7 мужчин и 3 женщины. По табельным номерам наудачу отобрано 2 человека. Дискретная случайная величина – число мужчин среди отобранных. Найти: ряд распределения, числовые характеристики, функцию распределения F(x). Построить график F(x).Случайная величина X задана функцией распределения. Найти: плотность вероятности f(x), вероятность попадания случайной величины в интервал (-1;1), среднеквадратическое отклонение Х. Построить графики плотности распределения и функции распределения.
Даны результаты выборочных наблюдений случайной величины. Найти несмещенные оценки математического ожидания, дисперсии и среднего квадратического отклонения. Считая случайно величину нормально распределенной, с надежностью 0,95 найти интервальную оценку для ее математического ожидания при известном среднем квадратическом отклонении (σ=2) и при неизвестном среднем квадратическом отклонении
Отношение зрителей к включению одной из телепередач в программу выразилось следующими данными
Можно ли считать, что отношение к включению данной передачи в программу не зависит от пола зрителя? Принять α = 0,10.

Рабочий обслуживает три однотипных станка. Вероятность того, что любой станок в течение часа потребует внимания рабочего, равна 0,4. Предполагая, что станки работают независимо, найти вероятность того, что в течение часа потребуют внимания, по крайней мере, два станка.Найти вероятность того, что наудачу взятое двузначное число кратно, или 5, или 8, или тому и другому числу одновременно.
35% всех кошек – рыжие, 15% – белые, 10% – черные, а остальные – пестрые. Найти вероятность того, что три наудачу взятые кошки одинакового окраса.Болванки изготовляются на трех прессах. 1 пресс вырабатывает 55% всех болванок, 2 – 15%, 3 – 30%. При этом из болванок с 1 пресса 0,03 нестандартных, со 2 – 0,01, с 3 – 0,05. Наудачу взятая со склада болванка не соответствует стандарту. Найти вероятность того, что она изготовлена на 2-м прессе.
Случайная величина X – цена на товар задана с помощью функции следующего вида:
Покупательский спрос на товар Y определяется формулой Y=25-3X. Найти среднее ожидаемое значение и дисперсию покупательского спроса на товар.

Вероятность попадания в мишень для первого спортсмена равна 0,75, для второго – 0,8, для третьего – 0,9. Спортсмены независимо друг от друга делают по одному выстрелу. Какова вероятность того, что попадет хотя бы один спортсмен? Ровно один спортсмен? Только первый спортсмен?