Артикул: 1162737

Раздел:Технические дисциплины (106260 шт.) >
  Математика (32800 шт.) >
  Теория вероятности (4268 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (2762 шт.)

Название или условие:
В результате опыта получена выборочная совокупность.
1. По данной таблице составить интервальный вариационный ряд, разбив всю вариацию на 8-10 интервалов.
2. По сгруппированным данным построить:
а) полигон относительных частот;
б) гистограмму относительных частот;
в) график эмпирической функции распределения.
3. Найти числовые характеристики выборочной совокупности: выборочную среднюю x ̅В, выборочную дисперсию DВ, выборочное среднее квадратическое отклонение σВ и исправленную дисперсию S2.
4. По виду гистограммы и эмпирической функции распределения выборки выдвинуть гипотезу о распределении генеральной совокупности.
5. Проверить выполнения правила “трёх сигм”.
6. Применив критерий согласия Пирсона χ2 с заданным уровнем значимости α, окончательно принять или опровергнуть выдвинутую гипотезу о распределении генеральной совокупности.
7. Найти доверительные интервалы для генеральной средней и генерального среднего квадратического отклонения по уровню надёжности γ.
9. α=0,05; γ=0,95
Вариант 9

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

В результате опыта получена выборочная совокупность. <br />1. По данной таблице составить интервальный вариационный ряд, разбив всю вариацию на 8-10 интервалов. <br />2. По сгруппированным данным построить: <br />а) полигон относительных частот; <br />б) гистограмму относительных частот; <br />в) график эмпирической функции распределения. <br />3. Найти числовые характеристики выборочной совокупности: выборочную среднюю x ̅<sub>В</sub>, выборочную дисперсию D<sub>В</sub>, выборочное среднее квадратическое отклонение  σ<sub>В</sub> и исправленную дисперсию S<sup>2</sup>. <br />4. По виду гистограммы и эмпирической функции распределения выборки выдвинуть гипотезу о распределении генеральной совокупности. <br />5. Проверить выполнения правила “трёх сигм”. <br />6. Применив критерий согласия Пирсона χ<sup>2</sup> с заданным уровнем значимости α, окончательно принять или опровергнуть выдвинутую гипотезу о распределении генеральной совокупности. <br />7. Найти доверительные интервалы для генеральной средней и генерального среднего квадратического отклонения по уровню надёжности γ. <br />9. α=0,05;  γ=0,95 <br /><b>Вариант 9</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Вычислить вероятность того, что при бросании двух игральных костей сумма очков на верхних гранях будет равна 8, если известно, что разность меньше 3.Техническая система состоит из пяти узлов. Вероятность нарушения режима работы для каждого узла равна 0,2. Найти вероятность выхода из строя двух узлов системы; хотя бы одного узла; наивероятнейшее число узлов, не вышедших из строя
Дневная добыча угля в некоторой шахте распределена по нормальному закону с математическим ожиданием 785 т и стандартным отклонением 60 т. а) Найдите вероятность того, что в определенный день будут добыты, по крайней мере 800 т угля; б) Определите долю рабочих дней, в которые будет добыто от 750 до 850 т угля.Отношение зрителей к включению одной из телепередач в программу выразилось следующими данными
Можно ли считать, что отношение к включению данной передачи в программу не зависит от пола зрителя? Принять α = 0,10.

Утверждается, что результат действия лекарства зависит от способа его применения. Проверить это утверждение при α = 0,05 по следующим данным:
Заданы среднее квадратическое отклонение σ=2 нормальной распределенной случайной величины Х, выборочная средняя Xв и объем выборки n=16.
Требуется:
1) найти доверительный интервал для оценки неизвестного математического ожидания а с доверительной вероятностью γ=0,95;
2) принимая α≈Xв , написать теоретическую плотность распределения вероятностей и схематично построить ее график;
3) следуя правилу «трех сигм», определить приближенно максимальное и минимальное значения случайной величины Х;
4) оценить вероятность того, что Х примет значение, превышающее β=19.
Случайная величина X задана функцией распределения. Найти: плотность вероятности f(x), вероятность попадания случайной величины в интервал (-1;1), среднеквадратическое отклонение Х. Построить графики плотности распределения и функции распределения.
Задана непрерывная случайная величина Χ функцией распределения F(х). Требуется:
1) найти плотность распределения вероятностей f(x);
2) схематично построить графики функций f(x) и F(х);
3) найти математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины Х;
4) найти вероятность того, что Х примет значение из интервала (α;β).
Вариант 1

В партии из 10 деталей 6 бракованных. Определить вероятность того, что среди выбранных наудачу 5 изделий ровно 2 окажутся бракованнымиВ магазине 9 тетрадей с машинами на обложке: 2 тетради с ауди, 4 с мерседесом и 3 с автомобилем BMW. Купили 6 тетрадей. Пусть X – число тетрадей с автомобилем BMW на обложке среди купленных тетрадей. Найди значение выражения C[1-2X]-M[4X-3]