Артикул: 1164344

Раздел:Технические дисциплины (107848 шт.) >
  Математика (32826 шт.) >
  Теория вероятности (4277 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (2771 шт.)

Название или условие:
35% всех кошек – рыжие, 15% – белые, 10% – черные, а остальные – пестрые. Найти вероятность того, что три наудачу взятые кошки одинакового окраса.

Описание:
Подробное решение в WORD

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Заданы среднее квадратическое отклонение σ=2 нормальной распределенной случайной величины Х, выборочная средняя Xв и объем выборки n=16.
Требуется:
1) найти доверительный интервал для оценки неизвестного математического ожидания а с доверительной вероятностью γ=0,95;
2) принимая α≈Xв , написать теоретическую плотность распределения вероятностей и схематично построить ее график;
3) следуя правилу «трех сигм», определить приближенно максимальное и минимальное значения случайной величины Х;
4) оценить вероятность того, что Х примет значение, превышающее β=19.
Задана непрерывная случайная величина Χ функцией распределения F(х). Требуется:
1) найти плотность распределения вероятностей f(x);
2) схематично построить графики функций f(x) и F(х);
3) найти математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины Х;
4) найти вероятность того, что Х примет значение из интервала (α;β).
Вариант 1

Из десяти билетов 4 выигрышных. Приобретается четыре билета. Какова вероятность того, что: хотя бы один из них невыигрышный; не менее трёх выигрышных; все выигрышные? Болванки изготовляются на трех прессах. 1 пресс вырабатывает 55% всех болванок, 2 – 15%, 3 – 30%. При этом из болванок с 1 пресса 0,03 нестандартных, со 2 – 0,01, с 3 – 0,05. Наудачу взятая со склада болванка не соответствует стандарту. Найти вероятность того, что она изготовлена на 2-м прессе.
Дневная добыча угля в некоторой шахте распределена по нормальному закону с математическим ожиданием 785 т и стандартным отклонением 60 т. а) Найдите вероятность того, что в определенный день будут добыты, по крайней мере 800 т угля; б) Определите долю рабочих дней, в которые будет добыто от 750 до 850 т угля.В первом ящике из 14 ламп 3 неисправны, во втором – из 10 ламп одна неисправная. Какова вероятность извлечь из наугад выбранного ящика исправную лампу?
Техническая система состоит из пяти узлов. Вероятность нарушения режима работы для каждого узла равна 0,2. Найти вероятность выхода из строя двух узлов системы; хотя бы одного узла; наивероятнейшее число узлов, не вышедших из строяДва баскетболиста делают по три броска мячом в корзину. Вероятности попадания мяча при каждом броске равны соответственно 0,8 и 0,6. Найти вероятность того, что у первого будет больше попаданий, чем у второго.
Авиакомпания знает, что в среднем 5% людей, делающих предварительный заказ на определенный рейс, не будет его использовать. Если авиакомпания продала 160 билетов на самолет, в котором лишь 155 мест, чему равна вероятность того, что место будет доступно для любого пассажира, имеющего заказ и планирующего улететь?Проверка функционирования устройства осуществляется специальным тестом. Если устройство функционирует правильно, то вероятность прохождения теста равна 0,99; в противном случае вероятность прохождения теста равна 0,40. Устройство допускается к работе, если тест проходит 5 раз подряд.
В предположении, что число прохождений теста подчиняется биномиальному распределению, ответить на следующие вопросы:
а) Какова область изменения и критическая область статистики критерия? Какое распределение имеет статистика критерия?
б) Как сформулировать нулевую гипотезу, если ошибка первого рода состоит в отклонении правильно функционирующего устройства?
в) Какова альтернативная гипотеза и в чем состоит ошибка второго рода?
г) Чему равны вероятности ошибок первого и второго рода?