Артикул: 1166447

Раздел:Технические дисциплины (109944 шт.) >
  Математика (32877 шт.) >
  Теория вероятности (4293 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (2783 шт.)

Название или условие:
В первом ящике из 14 ламп 3 неисправны, во втором – из 10 ламп одна неисправная. Какова вероятность извлечь из наугад выбранного ящика исправную лампу?

Описание:
Подробное решение в WORD

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Даны результаты выборочных наблюдений случайной величины. Найти несмещенные оценки математического ожидания, дисперсии и среднего квадратического отклонения. Считая случайно величину нормально распределенной, с надежностью 0,95 найти интервальную оценку для ее математического ожидания при известном среднем квадратическом отклонении (σ=2) и при неизвестном среднем квадратическом отклонении
В цехе работают 7 мужчин и 3 женщины. По табельным номерам наудачу отобрано 2 человека. Дискретная случайная величина – число мужчин среди отобранных. Найти: ряд распределения, числовые характеристики, функцию распределения F(x). Построить график F(x).
В магазине 9 тетрадей с машинами на обложке: 2 тетради с ауди, 4 с мерседесом и 3 с автомобилем BMW. Купили 6 тетрадей. Пусть X – число тетрадей с автомобилем BMW на обложке среди купленных тетрадей. Найди значение выражения C[1-2X]-M[4X-3]Болванки изготовляются на трех прессах. 1 пресс вырабатывает 55% всех болванок, 2 – 15%, 3 – 30%. При этом из болванок с 1 пресса 0,03 нестандартных, со 2 – 0,01, с 3 – 0,05. Наудачу взятая со склада болванка не соответствует стандарту. Найти вероятность того, что она изготовлена на 2-м прессе.
35% всех кошек – рыжие, 15% – белые, 10% – черные, а остальные – пестрые. Найти вероятность того, что три наудачу взятые кошки одинакового окраса.Задана непрерывная случайная величина Χ функцией распределения F(х). Требуется:
1) найти плотность распределения вероятностей f(x);
2) схематично построить графики функций f(x) и F(х);
3) найти математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины Х;
4) найти вероятность того, что Х примет значение из интервала (α;β).
Вариант 1

Имеются две партии изделий по 12 и 15 штук, причем в каждой партии одно изделие бракованное. Изделие, взятое наудачу из первой партии, переложено во вторую, после чего выбирается наудачу изделие из второй партии. Определить вероятность того, что из второй партии извлечено бракованное изделие.Отношение зрителей к включению одной из телепередач в программу выразилось следующими данными
Можно ли считать, что отношение к включению данной передачи в программу не зависит от пола зрителя? Принять α = 0,10.

Команда состоит из трех баскетболистов. Вероятность попадания в кольцо для первого баскетболиста равна 0,8, для второго баскетболиста она равна 0,9, и третий баскетболист попадает в кольцо с вероятностью 0,7. Баскетболисты бросили в корзину по одному мячу. За каждое попадание в корзину начисляется 15 у.е. Составить закон распределения числа начисленных баскетболистам у.е. Найти вероятность того, что баскетболисты наберут не менее 20 у.е.Проверка функционирования устройства осуществляется специальным тестом. Если устройство функционирует правильно, то вероятность прохождения теста равна 0,99; в противном случае вероятность прохождения теста равна 0,40. Устройство допускается к работе, если тест проходит 5 раз подряд.
В предположении, что число прохождений теста подчиняется биномиальному распределению, ответить на следующие вопросы:
а) Какова область изменения и критическая область статистики критерия? Какое распределение имеет статистика критерия?
б) Как сформулировать нулевую гипотезу, если ошибка первого рода состоит в отклонении правильно функционирующего устройства?
в) Какова альтернативная гипотеза и в чем состоит ошибка второго рода?
г) Чему равны вероятности ошибок первого и второго рода?