Артикул: 1151594

Раздел:Технические дисциплины (96808 шт.) >
  Сопротивление материалов (сопромат) (613 шт.) >
  Расчет ступенчатых стержней (брусьев) (99 шт.)

Название или условие:
Расчет ступенчатого стержня на прочность и жесткость при растяжении и сжатии
Требуется:
1) Построить эпюру продольных сил;
2) Из расчета на прочность определить безопасные размеры круглого поперечного сечения ступеней стержня;
3) Построить эпюру нормальных напряжений;
4) Построить эпюру перемещений.

Дополнительные данные:
1) Расчетная схема (рисунок 1);
2) Материал – чугун: предел прочности на растяжение σв+=80 МПа, предел прочности на сжатие σв-=240 МПа, модуль упругости E=1,5∙105 МПа;
3) Коэффициент запаса прочности [n]=2.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Расчет ступенчатого стержня на прочность и жесткость при растяжении и сжатии</b><br />Требуется:<br />1) Построить эпюру продольных сил;<br />2) Из расчета на прочность определить безопасные размеры круглого поперечного сечения ступеней стержня;<br />3) Построить эпюру нормальных напряжений;<br />4) Построить эпюру перемещений.  <br /><br />Дополнительные данные:<br />1) 	Расчетная схема (рисунок 1);<br />2) Материал – чугун: предел прочности на растяжение σ<sub>в</sub><sup>+</sup>=80 МПа, предел прочности на сжатие σ<sub>в</sub><sup>-</sup>=240 МПа, модуль упругости E=1,5∙10<sup>5</sup>  МПа;<br />3) Коэффициент запаса прочности [n]=2.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Расчеты на растяжение-сжатие чугунных стержней.
Для заданного чугунного стержня:
1) Определить необходимые по условию прочности площади поперечных сечений стержней.
2) Определить перемещения сечений стержня (считая слева направо), относительно левой заделки.)
Вариант 15
Дано:
l=500 мм;
A1=3A (мм2);
A2=2,5A (мм2)
P1=5P; P2=3P; P=50 кН
Материал стержня – чугун СЧ18 – 36
σр=180 МПа;
σсж=700 МПа

Задача 3. Построить эпюры продольных сил N, нормальных напряжений σ, проверить прочность и определить перемещения свободного конца стержня. Материал – сталь Ст3, [σ] = 160МПа. Е = 200000 МПа. Остальные данные взять из Таблицы №3 согласно своему варианту.
Вариант 9

Проектировочный расчет статически определимого ступенчатого стержня при растяжении-сжатии
К стальному ступенчатому стержню (Е=2•105 МПа) приложена нагрузка, как указано на схеме (табл. 2.1, табл. 2.2). Определить размены поперечных сечений участков стержня и полное его удлинение
Порядок выполнения:
1. Разбить схему на силовые участки, в каждом определить методом сечений продольные усилия, построить эпюру Ni.
2. Определить допускаемое напряжение материала стержня.
3. Используя условие прочности при растяжении-сжатии определить размеры поперечных сечений участков стержня.
4. Проверить прочность.
5. Определить абсолютные продольные деформации участков Δli и полное удлинение стержня.
6. Найти перемещения границ участков, построить эпюру перемещений δi.
7. Сравнить вес ступенчатого стержня и стержня постоянного поперечного сечения с Аmax,
Вариант 2

Дано: σT = 240 МПа, P1 = 35 кН, P2 = 80 кН, P3 = 120 кН, E = 2·105 МПа, a = 0,5 м, b = 0,6 м, c = 0,3 м, F1 = 5 см2, F2 = 10 см2 1. Построить эпюры N
2. Построить эпюры напряжений σ
3. Построить эпюры продольных перемещений.
4. Проверить прочности бруса.

Расчетно-графическая работа №1
Расчёт статически определимого бруса на растяжение (сжатие) с учётом собственного веса

Задание: построить эпюры нормальных сил и напряжений с учетом собственного веса
Вариант 7
Дано: F = 1.7 кН, A = 26 см2
a=3.7 м, b = 3.1 м, c = 1.7 м
Е = 2·105 МПа
γ = 7,85 г/см3

Стальной брус нагружен силами F1, F2, F3. Построить эпюры продольных сил и нормальных напряжений по длине бруса. Данные для решения задачи взять из таблицы 3 и рисунка 3.
Задача 25. (рис. 3, табл. 2). Двухступенчатый стальной брус нагружен силами F1 и F2. Построить эпюры продольных сил и нормальных напряжений по длине бруса. Сделать вывод о прочности бруса, приняв [σ] =160МПа. Определить удлинение (укорочение) бруса, приняв Е=2∙10 МПа.
Статически неопределимая задача деформации растяжения-сжатия.
1. Определить реакции опор;
2. Построить эпюру по длине стержня;
3. Подобрать прочные поперечные размера стержня при заданном допускаемом напряжении: [б] = 140 МПа [Н/мм2 ];
4. Построить эпюру напряжений в поперечных сечениях по длине стержня;
5. Построить эпюру перемещений сечений при заданном модуле упругости Е = 2∙105 МПа.

Задание 1. «Растяжение, сжатие»
Для стержня, загруженного в соответствии с данными, в табл. 1.1:
а) построить эпюру продольных сил;
б) подобрать из условия прочности размеры стержня круглого и квадратного сечений;
в) определить перемещение свободного конца стержня.
Для четных вариантов исходная схема стержня изображена на рис. 1.2, для нечетных – на рис. 1.3. Значения допускаемых напряжений можно взять из приложения.
Вариант 872

Растяжение-сжатие
Определить величины и построить эпюры продольных сил, нормальных напряжений и продольных перемещений точек стержня. Модуль упругости E = 2,000∙105 Н/ мм2
b = 0,2 м,
F1 = 121,00 кН, F2 = 110,00 кН, F3 = 100,00 кН,
A1 = 2364 мм2, A2 = 2860 мм2, A3 = 2600 мм2,
k=1,1.