Артикул: 1148961

Раздел:Технические дисциплины (94412 шт.) >
  Сопротивление материалов (сопромат) (601 шт.) >
  Расчет ступенчатых стержней (брусьев) (94 шт.)

Название или условие:
Задача 25. (рис. 3, табл. 2). Двухступенчатый стальной брус нагружен силами F1 и F2. Построить эпюры продольных сил и нормальных напряжений по длине бруса. Сделать вывод о прочности бруса, приняв [σ] =160МПа. Определить удлинение (укорочение) бруса, приняв Е=2∙10 МПа.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задача 25.</b> (рис. 3, табл. 2). Двухступенчатый стальной брус  нагружен силами F1 и  F2. Построить эпюры продольных сил и нормальных напряжений по длине бруса. Сделать вывод о прочности бруса,  приняв    [σ] =160МПа.  Определить удлинение (укорочение) бруса,  приняв  Е=2∙10 МПа.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Расчеты на прочность и жесткость при кручении при осевом воздействии нагрузок
Для заданной расчетной схемы ступенчатого бруса требуется:
1. Разбить брус на характерные участки в зависимости от схемы приложения нагрузок и изменения размеров поперечного сечения
2. Составить аналитические выражения для определения внутренних усилий по каждому участку, рассчитать их величину в характерных точках и построить эпюру продольных сил (эп. N, кН)
3. Записать условие прочности для каждого участка бруса. Назначить размеры прямоугольного поперечного сечения из условий прочности. Принять для всех нечетных вариантов расчетных схем соотношение сторон b:h = 1:2 и для всех четных вариантов b:h = 1:1,5. Построить эпюру нормальных напряжений (эп. σ, кПа или МПа)
4. Для каждого участка бруса составить уравнения для определения продольных деформаций; записать условие жесткости для каждого участка и из этого условия назначить размеры поперечного сечения. Построить эпюру перемещений (эп. λ, мм)
5. Сравнить размеры сечений, полученных из условий прочности и жесткости; окончательно назначить размеры, удовлетворяющие обоим условиям.
Вариант 12.4

Задача №2
РАСЧЕТ СТУПЕНЧАТОГО БРУСА НА РАСТЯЖЕНИЕ И СЖАТИЕ
Часть I. Для заданного статически определимого стального ступенчатого бруса требуется:
1. Построить эпюру продольных сил
2. Из условия прочности по нормальным напряжениям подобрать поперечные сечения для каждой ступени, приняв [σ]=160 Мпа.
3. Определить полную деформацию бруса и построить эпюру перемещения поперечных сечений, приняв Е = 2•105 Мпа.
4. Найти перемещение заданного сечения А-А.
Часть II. Для ступенчатого бруса, рассмотренного в части I (с подобранными поперечными сечениями), жестко закрепив свободный конец, требуется:
1. Раскрыть статическую неопределимость.
2. Построить эпюры продольных сил и нормальных напряжений
3. Найти полные напряжения для каждой ступени и сравнить их с допускаемыми напряжениями
Группа А Вариант 2
Дано: F = 24 кН, l = 0.4 м

Для стального бруса заданной схемы (рис. 1) требуется (без учета собственного веса):
1) Построить эпюру продольных сил
2) при допускаемых напряжениях на растяжение [σp] = 160 МПа и на сжатие [σc] = 80 МПа подобрать постоянное по длине бруса сечение (определить площадь сечения);
3) построить эпюру нормальных напряжений σх по длине бруса;
4) приняв модуль упругости материала вала Е = 2·105 МПа определить абсолютные удлинения всех участков бруса и построить эпюру продольных перемещений Δх его поперечных сечений;
5) вычислить потенциальную энергию упругой деформации бруса U и работу внешних сил А; при расхождении этих величин более, чем на 1%, следует уточнить расчет или найти ошибки.

Проектировочный расчет статически определимого ступенчатого стержня при растяжении-сжатии
К стальному ступенчатому стержню (Е=2•105 МПа) приложена нагрузка, как указано на схеме (табл. 2.1, табл. 2.2). Определить размены поперечных сечений участков стержня и полное его удлинение
Порядок выполнения:
1. Разбить схему на силовые участки, в каждом определить методом сечений продольные усилия, построить эпюру Ni.
2. Определить допускаемое напряжение материала стержня.
3. Используя условие прочности при растяжении-сжатии определить размеры поперечных сечений участков стержня.
4. Проверить прочность.
5. Определить абсолютные продольные деформации участков Δli и полное удлинение стержня.
6. Найти перемещения границ участков, построить эпюру перемещений δi.
7. Сравнить вес ступенчатого стержня и стержня постоянного поперечного сечения с Аmax,
Вариант 11

Стальной брус нагружен силами F1, F2, F3. Построить эпюры продольных сил и нормальных напряжений по длине бруса. Данные для решения задачи взять из таблицы 3 и рисунка 3.
Задача 2
Стальной стержень (Е = 2·105 МПа), один конец которого жестко защемлен, другой – свободен, находится под действием продольных сил Р и распределенной нагрузки t = 20 кН/м. Отдельные участки стержня имеют различную площадь поперечного сечения, F или 2F (рис.3).
Требуется:
1) сделать схематический чертеж бруса по заданным размерам, соблюдая масштаб длин по вертикали;
2) вычислить значения продольной силы N и нормального напряжения σ, построить их эпюры;
3) найти перемещение сечения I – I.
Дано: F=2,8 см2, a=0,18 м, b=0,17 м, c=0,14 м, P=27 кН.

Задание 1. Построение эпюр при растяжении (сжатии)
Стальной двухступенчатый брус, длины ступеней которого указаны на рис. 1.1, нагружен силами F1, F2, F3 (положение точек приложения сил задано размерами). Построить эпюры продольных сил и нормальных напряжений по длине бруса, а так же эпюру перемещений поперечных сечений бруса. Определить перемещение Δl свободного конца бруса, приняв E = 2·105МПа.
Дано: F1=24 кН; F2=11 кН; F3=27 кН; А1 =1,5 см2 ; А2 =4,0 см2 .

Проектировочный расчет стержня при растяжении - сжатии
Задача № 1.
Для заданного стержня (рис. 1) требуется:
- найти реакцию заделки:
- построить эпюру продольной силы;
- записать условие прочности;
- найти площадь поперечного сечения стержня;
- определить полное изменение длины стержня ;
- определить относительную продольную деформацию и проверить выполнение условия жесткости.
При расчете принять = 180 МПа.

Задание 1. «Растяжение, сжатие»
Для стержня, загруженного в соответствии с данными, в табл. 1.1:
а) построить эпюру продольных сил;
б) подобрать из условия прочности размеры стержня круглого и квадратного сечений;
в) определить перемещение свободного конца стержня.
Для четных вариантов исходная схема стержня изображена на рис. 1.2, для нечетных – на рис. 1.3. Значения допускаемых напряжений можно взять из приложения.

Проектировочный расчет статически определимого ступенчатого стержня при растяжении-сжатии
К стальному ступенчатому стержню (Е=2•105 МПа) приложена нагрузка, как указано на схеме (табл. 2.1, табл. 2.2). Определить размены поперечных сечений участков стержня и полное его удлинение
Порядок выполнения:
1. Разбить схему на силовые участки, в каждом определить методом сечений продольные усилия, построить эпюру Ni.
2. Определить допускаемое напряжение материала стержня.
3. Используя условие прочности при растяжении-сжатии определить размеры поперечных сечений участков стержня.
4. Проверить прочность.
5. Определить абсолютные продольные деформации участков Δli и полное удлинение стержня.
6. Найти перемещения границ участков, построить эпюру перемещений δi.
7. Сравнить вес ступенчатого стержня и стержня постоянного поперечного сечения с Аmax,