Артикул: 1068263

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Уравнение движения точки (196 шт.)

Название:Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т в которое точка пройдет полную окружность. Дано: x=4sin π/3 t-2, y=4cos π/3 t+2

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Даны уравнения движения точки. 	<br />1. Определить уравнение траектории и построить ее. 	<br />2. Определить начальное положение точки на траектории. 	<br />3. Указать моменты времени, когда точка пересекает оси координат. 	<br />4. Найти закон движения точки по траектории  s=φ(t), принимая за начало отсчета расстояний начальное положение точки. 	<br />5. Определить время Т в которое точка пройдет полную окружность.  Дано: x=4sin π/3 t-2, y=4cos π/3 t+2

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Задание К1-22
Дано: уравнения движения точки в плоскости ху t1 = 1 с.
Найти: уравнение траектории точки; скорость и ускорение, касательное и нормальное ускорение и радиус кривизны траектории в момент t = t1 .

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 8)
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 9)
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 29)
x = 5t2 + (5t/3) - 3, y = 3t2 + t + 3, t = 1 c

Дано:
y = 2sin(πt/6) см
x = 2 - 3cos(πt/3) см
t1 = 0, t2 = 1 c
Точка движется а плоскости oxy. Уравнение движения точки задано координатами: x = x(t), y = y(t), где x и y в сантиметрах, t - в секундах. Уравнение y = y(t) дано в таблице 1 - номер варианта соответствует сумме трех последних цифр номера зачетной книжки (г + д + е). Уравнение x = x(t) дано в таблице 2, где номер столбца выбирается в соответствии с номером варианта, а номер строки соответствует последней цифре номера зачетной книжки (е).
Требуется:
- записать уравнение траектории в декартовой системе координат: y = y(x);
- построить траекторию;
- определить положение точки на траектории в начальный момент времени t = 0 c, направление движения точки по траектории, положение точки на траектории через t = 1 c
- вычислить вектор скорости u и вектор ускорения а точки для t = 0 и t = 1 c
- задать движение точки естественным способом: s = s(t)
- вычислить нормальную и касательную составляющие ускорения точки для t = 0 и t = 1 c геометрически и аналитически
- вычислить радиус кривизны для t = 0 и t = 1 c
Функциональные зависимости y = y(t), x= x(t) заданы в таблицах 2.1(а) и 2.2.(б) соответственно

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t) , принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.
Дано: x=3cos π/6 t - 1,5, y=4-4cos π/3 t

Задача 7.8.20 из сборника Кепе.
Точка движется по криволинейной траектории с касательным ускорением aτ = 2 м/с2. Определить угол в градусах между векторами скорости и полного ускорения точки в момент времени t = 2 с, когда радиус кривизны траектории ρ = 4 м, если при t0 = 0 скорость точки v0 = 0
Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки. Дано: x=8sin π/4t-4, y=6sin π/4 t+3

Задача 1.1
Точка, получив направленную горизонтальную скорость, движется по закону, заданному уравнениями. Найти уравнение траектории (y=f(x)), скорость и ускорение точки (нормальную и касательную составляющие), радиус кривизны траектории в любом положении, а также в заданный момент времени t.
Построить в масштабе траекторию движения точки, указать на графике положение точки в момент времени t, направление векторов скорости и ускорения точки в заданный момент времени.
Вариант 3
Дано: x=2t, y=10t2/2, t = 3 с
Задача К1
Известен закон движения точки M в плоскости Oxy: x = 4 − 2t, y = 3 − 4 cos(πt/4).
Требуется найти вид ее траектории. Для заданного момента времени t1 = 1 с определить:
- положение точки M на траектории;
- скорость и ускорение точки M;
- ее касательное и нормальное ускорения;
- радиус кривизны в соответствующей точке траектории.