Артикул: 1033780

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Уравнение движения точки (196 шт.)

Название:Материальная точка движется по окружности радиусом R. Ее тангенциальное ускорение изменяется по закону Wr = kt , где k>0. В какой момент времени t с начала движения модули нормального и тангенциального ускорения будут равны? Чему равно полное ускорение материальной точки в этот момент времени? Какой угловой путь φ пройдет точка к этому моменту времени? Качественно изобразите закон изменения угловой скорости ω как функцию времени.

Описание:
Подробное решение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Задание К1-22
Дано: уравнения движения точки в плоскости ху t1 = 1 с.
Найти: уравнение траектории точки; скорость и ускорение, касательное и нормальное ускорение и радиус кривизны траектории в момент t = t1 .

Задача 1.1
Точка, получив направленную горизонтальную скорость, движется по закону, заданному уравнениями. Найти уравнение траектории (y=f(x)), скорость и ускорение точки (нормальную и касательную составляющие), радиус кривизны траектории в любом положении, а также в заданный момент времени t.
Построить в масштабе траекторию движения точки, указать на графике положение точки в момент времени t, направление векторов скорости и ускорения точки в заданный момент времени.
Вариант 3
Дано: x=2t, y=10t2/2, t = 3 с
Материальная точка М движется в плоскости, на которой введена прямоугольная декартова система координат Оху. Движение точки задано координатным способом:
х =x (t)=k_1*cos⁡(2*k*t^2 )+k_2=- 2*cos⁡(2*0,9*t^2 )+3,
у = y(t)= k_3*cos⁡(k*t^2 )+k_4=- cos⁡(2*0,9*t^2 )+1.
Координаты точкиx, y измеряются в метрах, а аргумент t – в секундах.
Определить в заданный момент времени t=1,2 с все кинематические характеристики движущейся точки: уравнение траектории; координаты, проекции и величину скорости VX, VY и V, проекции и величину полного ускорение aX, aY и a, а также ее касательное aτ и нормальное an ускорения, радиус кривизны и закон движения точки по траектории s=s(t). Изобразить на рисунке полученные результаты.

Задача К1
8 вариант
Дано:
t1=1с
х = 4 - 6 sin(πt/6), см
у = 8 cos(πt/6) - 3, см
Найти уравнение траектории точки М; для момента времени t1=1с найти положение точки на траектории, ее скорость, полное ускорение, касательное и нормальное ускорения, а также радиус кривизны в соответствующей точке.
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 30)
x = 2cos((πt2)/3) - 2
y = - 2sin((πt2)/3) + 3

Задача К1
В соответствии с заданными уравнениями движения определить траекторию движения точки.
Для заданного момента времени t найти положение точки на траектории, её скорость и ускорение (показать их на рисунке), а также радиус кривизны траектории в соответствующей точке.
Координаты х и у даны в метрах, время t в секундах.
x = 3t2+6t+12, y=t2+2t+6, t1=2c.

Задание 1. Кинематика точки
1. Выбор исходных данных.
2.Определение уравнения траектории и построение её на чертеже.
3. Для заданного момента времени t, определение:
3.1. Положения точки на траектории.
3.2. Вектора полной скорости.
3.3.Векторов касательного, нормального и полного ускорений.
3.4. Радиуса кривизны траектории.
4. Выводы
Вариант АБВ = 342
x=2-t
y=2+2cos(πt/4)
t1 = 1.65 c

Задано движение точки. Записать векторы скорости и ускорения точки, записать выражение модулей скорости и ускорения точки. Для момента времени t = 1 с показать положение точки, изобразить векторы скорости и ускорения x = 1 -2t2, y = 2t – t3
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 10)

x= -4cos(πt/3) см, y= -2sin(πt/3) -3 см
t=1, с

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 22)
x = 7t2 - 3, y = 5t, t1 = 1/4 c