Артикул: 1165997

Раздел:Технические дисциплины (109494 шт.) >
  Теоретическая механика (теормех, термех) (2304 шт.) >
  Кинематика (656 шт.) >
  Уравнение движения точки (239 шт.)

Название или условие:
Задание К1
3.1.1. Условия задачи. Материальная точка А движется в плоскости хОy. Движение точки задано уравнениями, где координаты х и y выражены в сантиметрах, а время t – в секундах.
Конкретный вид функций f1(t) и f2(t), в зависимости от номера варианта (шифра), определяется по данным, приведенным в табл. К1.
Определить уравнение траектории точки, а также законы изменения проекций скорости vx, vy и ускорения ах, аy на оси координат как функции времени.
Вычислить для момента времени t = 1 с координаты точки, скорость и ускорение точки и их проекции на оси координат, касательную aτ и нормальную an составляющие полного ускорения, а также длину радиуса кривизны ρ траектории.
Показать на схеме в выбранном масштабе траекторию точки (можно чертить только часть траектории в окрестностях точки А в момент времени t = 1 c), векторы V, a и их составляющих Vx, Vy , ax, ay, aτ, an, а также центр С кривизны траектории (при малой кривизне траектории, когда центр С находится за пределами схемы, достаточно показать направление к центру кривизны)
Вариант 789

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задание К1</b> <br />3.1.1. Условия задачи. Материальная точка А движется в плоскости хОy. Движение точки задано уравнениями, где координаты х и y выражены в сантиметрах, а время t – в секундах. <br />Конкретный вид функций f1(t) и f2(t), в зависимости от номера варианта (шифра), определяется по данным, приведенным в табл. К1. <br />Определить уравнение траектории точки, а также законы изменения проекций скорости vx, vy и ускорения ах, аy на оси координат как функции времени. <br />Вычислить для момента времени t = 1 с координаты точки, скорость и ускорение точки и их проекции на оси координат, касательную  a<sub>τ</sub> и нормальную a<sub>n</sub>  составляющие полного ускорения, а также длину радиуса кривизны ρ траектории. <br />Показать на схеме в выбранном масштабе траекторию точки (можно чертить только часть траектории в окрестностях точки А в момент времени t = 1 c), векторы V, a и их составляющих  Vx, Vy , ax, ay, aτ, an, а также центр С  кривизны траектории (при малой кривизне траектории, когда центр С находится за пределами схемы, достаточно показать направление к центру кривизны)<br /><b>Вариант 789</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Точка М движется по заданной траектории по закону s(t)=6t-0.5t2 (м). В какой момент времени t скорость точки равна 0 (м/с)
Задача 2. Точка движется по закону x=x(t), y=y(t). Для момента времени t=t1 найти скорость, ускорение точки и радиус кривизны траектории.
Вариант 10

Задача К1.
Определение кинематических характеристик движения материальной точки

По заданным уравнениям движения точки для момента времени t вычислить ее скорость, нормальное, касательное и полное ускорения, а также радиус кривизны траектории. На рисунке в масштабе изобразить траекторию движения точки и для заданного момента времени t построить векторы скорости и ускорения.
Вариант 14

Практическая работа №3
Уравнения траектории движения материальной точки.

Найти уравнение траектории точки, а также для момента времени t = t1 (c) определить положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории в соответствующей точке.
Вариант 11
x(t)=0.5t2+1.5,см;
y(t)=2t2-5,см;
t1=2.2 c;

Задание К.1. Определение скорости и ускорения точки по заданным уравнениям ее движения.
По заданным уравнениям движения точки М установить вид её траектории и для момента времени t = t1 (c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице.
Вариант 3

Вариант 10
Задача 2.
Уравнение вращения твердого тела задано в виде: φ = 2t3-3t2+12t. Определить угловую скорость, угловое ускорение и характер вращения тела при t=0.3 сек. Для точки, находящейся на расстоянии 5 см от оси вращения при t=1 с определить окружную скорость, касательное и нормальное ускорение.
Точка движется в плоскости Оху. Уравнение движения точки задано координатами:
x=t-4
y=(t+1)2-2 ;
где координаты выражены в сантиметрах, а время t в секундах. По заданным уравнениям движения точки М установить вид ее траектории. Геометрически и аналитически, для моментов времени t=0 сек и t=1 сек найти положение точки на траектории, скорость, ускорение полное, касательную и нормальную составляющую ускорения, а так же радиус кривизны траектории
Вариант 23

Задача К1
Точка В движется в плоскости x0y. Закон движения точки задан уравнениями: x = f1(t), y = f2(t), где x и y выражены в сантиметрах, t – в секундах.
Зависимость x = f1(t) указана непосредственно на рисунках, а зависимость y = f2(t) дана в табл. К1.
Найти уравнение траектории точки; для момента времени t1 = 1с определить положение, скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точки траектории.
Вариант 34

Задача 3. Точка движется по закону x=x(t), y=y(t). Для момента времени t=t1 найти скорость, ускорение точки и радиус кривизны траектории.
Вариант 8

Точка начинает движение из состояния покоя и движется по прямой с постоянным ускорением a=0,7 м/с2. Определить путь, который точка пройдет за промежуток времени от t1=4 с до t2=6 с.