Артикул: 1167284

Раздел:Технические дисциплины (110781 шт.) >
  Теоретическая механика (теормех, термех) (2399 шт.) >
  Кинематика (684 шт.) >
  Уравнение движения точки (250 шт.)

Название или условие:
Задача К1-75 (Рисунок К1.7, номер условия 5, С.М. Тарг 1989 г.)

Описание:
Под номером К1 помещены две задачи К1а и К1б, которые надо решить. Задача К1а. Точка В движется в плоскости xy (рис. К1.0 — К 1.9, табл. К1; траектория точки на рисунках показана условно). Закон движения точки задан уравнениями: x = f1(t), y = f2(t), где x и y выражены в сантиметрах, t — в секундах. Найти уравнение траектории точки; для момента времени t1 = 1 с определить скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории. Зависимость x = f1(t) указана непосредственно на рисунках, а зависимость y = f2(t) дана в табл. K1 (для рис. 0—2 в столбце 2, для рис. 3—6 в столбце 3, для рис. 7—9 в столбце 4). Как и в задачах С1 — С4, номер рисунка выбирается по предпоследней цифре шифра, а номер условия в табл. К1 — по последней. Задача К1б. Точка движется по дуге окружности радиуса R = 2 м по закону s = f(t), заданному в табл. К1 в столбце 5 (s — в метрах, t — в секундах), где s =AM — расстояние точки от некоторого начала A, измеренное вдоль дуги окружности. Определить скорость и ускорение точки в момент времени t1 = 1 с. Изобразить на рисунке векторы v и a, считая, что точка в этот момент находится в положении M, а положительное направление отсчета s — от А к М.

Поисковые тэги: Задачник Тарга 1989г.

Изображение предварительного просмотра:

<b>Задача К1-75 </b>(Рисунок К1.7, номер условия 5, С.М. Тарг 1989 г.)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

К.5. Определение кинематических характеристик движения твердого тела и его точек по уравнениям Эйлера.
Заданы уравнения сферического движения твердого тела ψ=ψ(t), Θ=Θ(t) и φ=φ(t),где ψ, Θ и φ-углы Эйлера Определить для момента времени t=t1 угловую скорость и угловое ускорение точки М, координаты которой в подвижной системе, жестко связанной с телом, ξ, η, ζ.
Вариант 5

Задача 2
Груз, сброшенный с самолета на высоте h=3000 м, движется по уравнению r=40ti+5t2j (м,с).
Построить траекторию движения груза и найти расстояние по горизонтали между точками сброса и падения.
Материальная точка движется по окружности, радиуса R; закон движения точки s(t). Определить способ задания движения точки, скорость точки в момент врмени t1 и касательное, нормальное и полное ускорения в момент времени t2.
Исходные данные: R = 20 см; s(t)=12+5t+2t2, см; t1 = 0 с; t2 = 1 с.
Задача К–1. Вариант 14.
Определение скорости и ускорения точки, если закон движения точки задан естественным способом
Дано: точка движется по дуге окружности. R = 2 м, S = 6t2+4 м
Найти: скорость и ускорение точки при t = 1 c .
Задание К.1. Определение скорости и ускорения точки по заданным уравнениям ее движения.
По заданным уравнениям движения точки М установить вид её траектории и для момента времени t = t1 (c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице.
Вариант 3

Вариант 7
Задача 2.
Твердое тело вращается согласно уравнению ϕ=3t. Определить угловую скорость и угловое ускорение для начального момента времени. Для точки на расстоянии 10 см от оси вращения определить линейную скорость, касательное, нормальное и полное ускорение при t = 0.
Задача К1
По заданным уравнениям движения точки М х = x(t) и у = y(t) установить и построить вид её траектории. Для момента времени t = 1 с найти и построить положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице
Рисунок 7 условие 9

Задание К1
3.1.1. Условия задачи. Материальная точка А движется в плоскости хОy. Движение точки задано уравнениями, где координаты х и y выражены в сантиметрах, а время t – в секундах.
Конкретный вид функций f1(t) и f2(t), в зависимости от номера варианта (шифра), определяется по данным, приведенным в табл. К1.
Определить уравнение траектории точки, а также законы изменения проекций скорости vx, vy и ускорения ах, аy на оси координат как функции времени.
Вычислить для момента времени t = 1 с координаты точки, скорость и ускорение точки и их проекции на оси координат, касательную aτ и нормальную an составляющие полного ускорения, а также длину радиуса кривизны ρ траектории.
Показать на схеме в выбранном масштабе траекторию точки (можно чертить только часть траектории в окрестностях точки А в момент времени t = 1 c), векторы V, a и их составляющих Vx, Vy , ax, ay, aτ, an, а также центр С кривизны траектории (при малой кривизне траектории, когда центр С находится за пределами схемы, достаточно показать направление к центру кривизны)
Вариант 789

Тема: Кинематика точки.
В соответствии с заданными уравнениями движения определить траекторию движения точки. Для заданного момента времени найти положение точки на траектории, её скорость и ускорение, касательное и нормальное ускорения ,а также радиус кривизны траектории в соответствующей точке. Сделать чертеж.
Вариант 9

Задача 2. Точка движется по закону x=x(t), y=y(t). Для момента времени t=t1 найти скорость, ускорение точки и радиус кривизны траектории.
Вариант 10