Артикул: 1027656

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Уравнение движения точки (196 шт.)

Название:Даны уравнения движения снаряда, вылетевшего из ствола орудия.
Определить:
1) высоту полета H и дальность обстрела L;
2) скорость снаряда в момент падения;
3) ускорение снаряда.
Дано: x = 566t, y = 566t - 4,9t2
Найти: H, L, V, a.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Даны уравнения движения снаряда, вылетевшего из ствола орудия. 	<br />Определить: 	<br />1) высоту полета H и дальность обстрела L; 	<br />2) скорость снаряда в момент падения; 	<br />3) ускорение снаряда.	<br /> Дано: x = 566t, y = 566t - 4,9t<sup>2</sup><br />Найти: H, L, V, a.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Задача 7.8.20 из сборника Кепе.
Точка движется по криволинейной траектории с касательным ускорением aτ = 2 м/с2. Определить угол в градусах между векторами скорости и полного ускорения точки в момент времени t = 2 с, когда радиус кривизны траектории ρ = 4 м, если при t0 = 0 скорость точки v0 = 0
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 23)
x = 3 - 3t2 + 1
y = 4 - 5t2 + (5t/3)
t1 = 1 c

Задача К1.
7 вариант
Дано:
t1=1с
х = 12 sin(πt/6), см
y = 6 - 8 cos (πt/6), см
Найти уравнение траектории точки М; для момента времени t1=1с найти положение точки на траектории, ее скорость, полное ускорение, касательное и нормальное ускорения, а также радиус кривизны в соответствующей точке.
Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x=8sin π/2 t-4, y=8cos π/2 t + 4

Задача К1
Известен закон движения точки M в плоскости Oxy: x = 4 − 2t, y = 3 − 4 cos(πt/4).
Требуется найти вид ее траектории. Для заданного момента времени t1 = 1 с определить:
- положение точки M на траектории;
- скорость и ускорение точки M;
- ее касательное и нормальное ускорения;
- радиус кривизны в соответствующей точке траектории.

Задание К1-22
Дано: уравнения движения точки в плоскости ху t1 = 1 с.
Найти: уравнение траектории точки; скорость и ускорение, касательное и нормальное ускорение и радиус кривизны траектории в момент t = t1 .

Задано движение точки. Записать векторы скорости и ускорения точки, записать выражение модулей скорости и ускорения точки. Для момента времени t = 1 с показать положение точки, изобразить векторы скорости и ускорения x = 1 -2t2, y = 2t – t3
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 30)
x = 2cos((πt2)/3) - 2
y = - 2sin((πt2)/3) + 3

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 18)
x = 1 + 3cos((π·t2)/3) см
y = 3sin((πt2)/3) + 3 см
t = t1 = 1 с

Материальная точка М движется в плоскости, на которой введена прямоугольная декартова система координат Оху. Движение точки задано координатным способом:
х =x (t)=k_1*cos⁡(2*k*t^2 )+k_2=- 2*cos⁡(2*0,9*t^2 )+3,
у = y(t)= k_3*cos⁡(k*t^2 )+k_4=- cos⁡(2*0,9*t^2 )+1.
Координаты точкиx, y измеряются в метрах, а аргумент t – в секундах.
Определить в заданный момент времени t=1,2 с все кинематические характеристики движущейся точки: уравнение траектории; координаты, проекции и величину скорости VX, VY и V, проекции и величину полного ускорение aX, aY и a, а также ее касательное aτ и нормальное an ускорения, радиус кривизны и закон движения точки по траектории s=s(t). Изобразить на рисунке полученные результаты.