Артикул: 1140666

Раздел:Технические дисциплины (86809 шт.) >
  Математика (32435 шт.) >
  Теория вероятности (4198 шт.)

Название или условие:
(а) На железной дороге N поездов с номерами 1,2,⋯,N. Однажды вам встретился поезд с номером 60. Угадайте, сколько поездов на железной дороге.
(б) Вы повстречали 5 поездов, причем 60 по-прежнему наибольший номер. Снова постарайтесь угадать, сколько всего поездов на железной дороге.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Дуэли в городе Осторожности редко кончаются печальным исходом. Дело в том, что каждый дуэлянт прибывает на место встречи в случайный момент времени между 5 и 6 часами утра и, прождав соперника 5 минут, удаляется. В случае же прибытия последнего в эти пять минут дуэль состоится. Какая часть дуэлей действительно заканчивается поединком?Задача 1.3
Случайным образом n одинаковых шаров размещаются в m ящиках. Какова вероятность того, что ровно r ящиков останутся пустыми?

Какова вероятность того, что корни квадратного уравнения x2+2bx+c=0 вещественны? Стержень ломается случайным образом на три части. Найти средние длины короткого, среднего и длинного кусков.
В первой корзине 7 яблок и 9 груш, во второй – 2 яблока и 4 груши, в третьей – 11 яблок и 4 груши. Из наугад выбранной корзины взяли один фрукт. Найти вероятность того, что это груша. Какова вероятность того, что выбранная таким образом груша была в третьей корзине?Инструмент без систематической ошибки для измерения длин делает случайные ошибки, распределение которых имеет штандарт σ. Вам разрешается произвести всего два измерения для оценки длины двух цилиндрических стержней, один из которых явно длиннее другого. Можете ли вы придумать что-либо лучшее, чем сделать по одному измерению каждого стержня? (Для инструмента без систематической ошибки среднее наблюдений равно истинному значению.)
Частица выходит из начала координат 0 в трехмерном пространстве. Представим себе точку 0 как центр куба со стороною длины 2. За один шаг частица попадает в один из восьми углов куба. Поэтому при каждом шаге частица с равной вероятностью сдвигается на единицу длины вверх или вниз, на восток или на запад, на север или на юг. Какова доля частиц, возвращающихся в начало, при неограниченном времени блуждания? На плоскость нанесены параллельные прямые, отстоящие друг от друга на расстоянии 2a. Игла длины 2l (меньшей, чем 2a) брошена наудачу на плоскость. Какова вероятность того, что она пересечет одну из прямых?
Человеку, находящемуся в Лас-Вегасе, нужны 40 долларов, в то время как он располагает лишь 20 долларами. Он не хочет телеграфировать жене о переводе денег и решает играть в рулетку (отрицательно относясь к этой игре) согласно одной из двух стратегий: либо поставить все свои 20 долларов на «чет» и закончить игру сразу же, если он выиграет или проиграет, либо ставить на «чет» по одному доллару до тех пор, пока он не выиграет или не проиграет 20 долларов. Какая из этих двух стратегий лучше? Две урны содержат одно и то же количество шаров, несколько черных и несколько белых каждая. Из них извлекаются n (n ≥ 3) шаров с возвращением. Найти число n и содержимое обеих урн, если вероятность того, что все белые шары извлечены из первой урны, равна вероятности того, что из второй извлечены либо все белые, либо все черные шары.