Артикул: 1140653

Раздел:Технические дисциплины (86810 шт.) >
  Математика (32435 шт.) >
  Теория вероятности (4198 шт.)

Название или условие:
После выборов, в которых участвуют два кандидата, A и B, за них поступило a и b (a>b) бюллетеней соответственно, скажем, 3 и 2. Если подсчет голосов производится последовательным извлечением бюллетеней из урны, то какова вероятность того, что хотя бы один раз число вынутых бюллетеней, поданных за A и B, было одинаково?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Выходные дни и дни рождения. Согласно законам о трудоустройстве в городе N, наниматели обязаны предоставлять всем рабочим выходной, если хотя бы у одного из них день рождения, и принимать на службу рабочих независимо от их дня рождения. За исключением этих выходных рабочие трудятся весь год из 365 дней. Предприниматели хотят максимизировать среднее число человеко-дней в году. Сколько рабочих трудятся на фабрике в городе N? Две урны содержат одно и то же количество шаров, несколько черных и несколько белых каждая. Из них извлекаются n (n ≥ 3) шаров с возвращением. Найти число n и содержимое обеих урн, если вероятность того, что все белые шары извлечены из первой урны, равна вероятности того, что из второй извлечены либо все белые, либо все черные шары.
Если хорда выбирается наудачу в заданном круге, то какова вероятность того, что ее длина больше радиуса круга? У игрока M имеется 1 доллар, а у игрока N - 2 доллара. После каждого тура один из игроков выигрывает у другого один доллар. Игрок M более искусен, чем N, так что он выигрывает 23 игр. Игроки состязаются до банкротства одного из них. Какова вероятность выигрыша для M?
Игра состоит из последовательности партий, в каждой из которых вы или ваш партнер выигрывает очко, вы - с вероятностью p (меньшей, чем 12), он - с вероятностью 1−p. Число игр должно быть четным: 2, 4, 6 и т. д. Для выигрыша надо набрать больше половины очков. Предположим, что вам известно, что p=0,45, и в случае выигрыша вы получаете приз. Если число партий в игре выбирается заранее, то каков будет ваш выбор? Дуэли в городе Осторожности редко кончаются печальным исходом. Дело в том, что каждый дуэлянт прибывает на место встречи в случайный момент времени между 5 и 6 часами утра и, прождав соперника 5 минут, удаляется. В случае же прибытия последнего в эти пять минут дуэль состоится. Какая часть дуэлей действительно заканчивается поединком?
В качестве следующей задачи король предлагает мудрецу выбрать наибольшее из 100 чисел при тех же условиях, что и раньше, но на этот раз число на билете выбирается наудачу среди чисел от 0 до 1 (равномерно распределенные случайные числа) Какой должна быть стратегия мудреца? (а) На железной дороге N поездов с номерами 1,2,⋯,N. Однажды вам встретился поезд с номером 60. Угадайте, сколько поездов на железной дороге.
(б) Вы повстречали 5 поездов, причем 60 по-прежнему наибольший номер. Снова постарайтесь угадать, сколько всего поездов на железной дороге.
(а) Если стержень ломается случайным образом на две части, то какова средняя длина меньшего куска?
(б) Каково среднее отношение длины короткого куска к длине длинного куска?
Стержень ломается случайным образом на три части. Найти средние длины короткого, среднего и длинного кусков.