Артикул: 1140663

Раздел:Технические дисциплины (86810 шт.) >
  Математика (32435 шт.) >
  Теория вероятности (4198 шт.)

Название или условие:
Выходные дни и дни рождения. Согласно законам о трудоустройстве в городе N, наниматели обязаны предоставлять всем рабочим выходной, если хотя бы у одного из них день рождения, и принимать на службу рабочих независимо от их дня рождения. За исключением этих выходных рабочие трудятся весь год из 365 дней. Предприниматели хотят максимизировать среднее число человеко-дней в году. Сколько рабочих трудятся на фабрике в городе N?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

(а) Если стержень ломается случайным образом на две части, то какова средняя длина меньшего куска?
(б) Каково среднее отношение длины короткого куска к длине длинного куска?
Дуэли в городе Осторожности редко кончаются печальным исходом. Дело в том, что каждый дуэлянт прибывает на место встречи в случайный момент времени между 5 и 6 часами утра и, прождав соперника 5 минут, удаляется. В случае же прибытия последнего в эти пять минут дуэль состоится. Какая часть дуэлей действительно заканчивается поединком?
Чеканщик кладет m фальшивых монет в ящик, содержащий всего n монет. Король, подозревая чеканщика, извлекает случайным образом по одной монете из каждого из n ящиков и проверяет их. Какова вероятность того, что в выборке из n монет ровно r фальшивых? При каком минимальном числе людей в компании вероятность того, что хотя бы два из них родились в один и тот же день, не меньше 1/2? (Годы рождения могут и не совпадать.)
В пирамиде 10 винтовок, из которых 4 пристреляны, а 6 – нет. Вероятность попадания при стрельбе из пристрелянной винтовки – 0.95; для винтовки без пристрелки эта вероятность равна – 0.8. Во время учебной тревоги солдат наудачу берет винтовку из пирамиды и стреляет из нее дважды. Найти вероятности того, что : а) солдат оба раза поразил мишень; б) солдат стрелял из пристрелянной винтовки, если он поразил мишень дважды.Вероятность того, что лампа останется исправной в течение месяца, равна 0,9. В коридоре поставили 5 новых ламп. Какова вероятность того, что из строя выйдут три лампы; останутся исправными менее 4–х ламп?
В качестве следующей задачи король предлагает мудрецу выбрать наибольшее из 100 чисел при тех же условиях, что и раньше, но на этот раз число на билете выбирается наудачу среди чисел от 0 до 1 (равномерно распределенные случайные числа) Какой должна быть стратегия мудреца? Споры, несущиеся по воздуху, производят маленькие колонии плесени на пластинках желатина в лаборатории. В среднем на пластинке имеется 3 колонии. Какая доля пластинок имеет ровно 3 колонии? Если среднее число колоний равно некоторому достаточно большому целому числу m, то какая доля пластинок содержит ровно m колоний?
После выборов, в которых участвуют два кандидата, A и B, за них поступило a и b (a>b) бюллетеней соответственно, скажем, 3 и 2. Если подсчет голосов производится последовательным извлечением бюллетеней из урны, то какова вероятность того, что хотя бы один раз число вынутых бюллетеней, поданных за A и B, было одинаково? У игрока M имеется 1 доллар, а у игрока N - 2 доллара. После каждого тура один из игроков выигрывает у другого один доллар. Игрок M более искусен, чем N, так что он выигрывает 23 игр. Игроки состязаются до банкротства одного из них. Какова вероятность выигрыша для M?