Артикул: 1140663

Раздел:Технические дисциплины (86810 шт.) >
  Математика (32435 шт.) >
  Теория вероятности (4198 шт.)

Название или условие:
Выходные дни и дни рождения. Согласно законам о трудоустройстве в городе N, наниматели обязаны предоставлять всем рабочим выходной, если хотя бы у одного из них день рождения, и принимать на службу рабочих независимо от их дня рождения. За исключением этих выходных рабочие трудятся весь год из 365 дней. Предприниматели хотят максимизировать среднее число человеко-дней в году. Сколько рабочих трудятся на фабрике в городе N?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Прямоугольная полоса размером 1×n(n ≥ 4) составлена из единичных полей, занумерованных числами 1,2,⋯,n. На полях с номерами n–2,n−1,n стоит по одной фишке. Двое играют в следующую игру: каждый игрок своим ходом может перенести любую фишку на любое свободное поле с меньшим номером. Проигрывает тот, кто не может сделать очередного хода. Доказать, что начинающий может ходить так, чтобы наверняка выиграть. После выборов, в которых участвуют два кандидата, A и B, за них поступило a и b (a>b) бюллетеней соответственно, скажем, 3 и 2. Если подсчет голосов производится последовательным извлечением бюллетеней из урны, то какова вероятность того, что хотя бы один раз число вынутых бюллетеней, поданных за A и B, было одинаково?
(а) Если стержень ломается случайным образом на две части, то какова средняя длина меньшего куска?
(б) Каково среднее отношение длины короткого куска к длине длинного куска?
Человеку, находящемуся в Лас-Вегасе, нужны 40 долларов, в то время как он располагает лишь 20 долларами. Он не хочет телеграфировать жене о переводе денег и решает играть в рулетку (отрицательно относясь к этой игре) согласно одной из двух стратегий: либо поставить все свои 20 долларов на «чет» и закончить игру сразу же, если он выиграет или проиграет, либо ставить на «чет» по одному доллару до тех пор, пока он не выиграет или не проиграет 20 долларов. Какая из этих двух стратегий лучше?
Частица выходит из начала координат 0 в трехмерном пространстве. Представим себе точку 0 как центр куба со стороною длины 2. За один шаг частица попадает в один из восьми углов куба. Поэтому при каждом шаге частица с равной вероятностью сдвигается на единицу длины вверх или вниз, на восток или на запад, на север или на юг. Какова доля частиц, возвращающихся в начало, при неограниченном времени блуждания? Какова вероятность того, что корни квадратного уравнения x2+2bx+c=0 вещественны?
Игра состоит из последовательности партий, в каждой из которых вы или ваш партнер выигрывает очко, вы - с вероятностью p (меньшей, чем 12), он - с вероятностью 1−p. Число игр должно быть четным: 2, 4, 6 и т. д. Для выигрыша надо набрать больше половины очков. Предположим, что вам известно, что p=0,45, и в случае выигрыша вы получаете приз. Если число партий в игре выбирается заранее, то каков будет ваш выбор? Предположим, что на плоскость, разграфленную на единичные клетки вертикальными и горизонтальными прямыми, наудачу брошена игла длиной 2l (меньшей, чем 1) Каково среднее число прямых, пересекаемых иглою? (Мы считаем, что сторона клетки 2a равна 1, так как можно измерять длину иглы в единицах длины клеток)
Стержень ломается случайным образом на три части. Найти средние длины короткого, среднего и длинного кусков. На плоскость нанесены параллельные прямые, отстоящие друг от друга на расстоянии 2a. Игла длины 2l (меньшей, чем 2a) брошена наудачу на плоскость. Какова вероятность того, что она пересечет одну из прямых?