Артикул: 1154282

Раздел:Технические дисциплины (98569 шт.) >
  Математика (32716 шт.) >
  Теория вероятности (4227 шт.)

Название или условие:
Задача 1.3
Случайным образом n одинаковых шаров размещаются в m ящиках. Какова вероятность того, что ровно r ящиков останутся пустыми?

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Задача 1.3 <br />Случайным образом n одинаковых шаров размещаются в m ящиках. Какова вероятность того, что ровно r ящиков останутся пустыми?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

В первой корзине 7 яблок и 9 груш, во второй – 2 яблока и 4 груши, в третьей – 11 яблок и 4 груши. Из наугад выбранной корзины взяли один фрукт. Найти вероятность того, что это груша. Какова вероятность того, что выбранная таким образом груша была в третьей корзине?При каком минимальном числе людей в компании вероятность того, что хотя бы два из них родились в один и тот же день, не меньше 1/2? (Годы рождения могут и не совпадать.)
Изделие подвергается четырем видам испытаний. Вероятность того, что изделие выдержит первое испытание, равна 0,9; второе – 0,6; третье 0,8; четвертое – 0,7. Найти вероятность того, что изделие выдержит более двух испытаний; хотя бы одно испытание.Две урны содержат одно и то же количество шаров, несколько черных и несколько белых каждая. Из них извлекаются n (n ≥ 3) шаров с возвращением. Найти число n и содержимое обеих урн, если вероятность того, что все белые шары извлечены из первой урны, равна вероятности того, что из второй извлечены либо все белые, либо все черные шары.
На плоскость нанесены параллельные прямые, отстоящие друг от друга на расстоянии 2a. Игла длины 2l (меньшей, чем 2a) брошена наудачу на плоскость. Какова вероятность того, что она пересечет одну из прямых? Прямоугольная полоса размером 1×n(n ≥ 4) составлена из единичных полей, занумерованных числами 1,2,⋯,n. На полях с номерами n–2,n−1,n стоит по одной фишке. Двое играют в следующую игру: каждый игрок своим ходом может перенести любую фишку на любое свободное поле с меньшим номером. Проигрывает тот, кто не может сделать очередного хода. Доказать, что начинающий может ходить так, чтобы наверняка выиграть.
Человеку, находящемуся в Лас-Вегасе, нужны 40 долларов, в то время как он располагает лишь 20 долларами. Он не хочет телеграфировать жене о переводе денег и решает играть в рулетку (отрицательно относясь к этой игре) согласно одной из двух стратегий: либо поставить все свои 20 долларов на «чет» и закончить игру сразу же, если он выиграет или проиграет, либо ставить на «чет» по одному доллару до тех пор, пока он не выиграет или не проиграет 20 долларов. Какая из этих двух стратегий лучше? (а) Если стержень ломается случайным образом на две части, то какова средняя длина меньшего куска?
(б) Каково среднее отношение длины короткого куска к длине длинного куска?
Игроки A и B в орлянку играют N раз. После первого бросания каковы шансы на то, что в течение всей игры их выигрыши не совпадут? Разъезжающий булочник продает в среднем 20 кексов за одну поездку. Какова вероятность того, что он продаст четное число кексов? (Предполагается, что число покупок подчиняется закону Пуассона.)