Артикул: 1140655

Раздел:Технические дисциплины (86810 шт.) >
  Математика (32435 шт.) >
  Теория вероятности (4198 шт.)

Название или условие:
Если хорда выбирается наудачу в заданном круге, то какова вероятность того, что ее длина больше радиуса круга?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Частица выходит из начала координат 0 в трехмерном пространстве. Представим себе точку 0 как центр куба со стороною длины 2. За один шаг частица попадает в один из восьми углов куба. Поэтому при каждом шаге частица с равной вероятностью сдвигается на единицу длины вверх или вниз, на восток или на запад, на север или на юг. Какова доля частиц, возвращающихся в начало, при неограниченном времени блуждания? Дуэли в городе Осторожности редко кончаются печальным исходом. Дело в том, что каждый дуэлянт прибывает на место встречи в случайный момент времени между 5 и 6 часами утра и, прождав соперника 5 минут, удаляется. В случае же прибытия последнего в эти пять минут дуэль состоится. Какая часть дуэлей действительно заканчивается поединком?
Две урны содержат одно и то же количество шаров, несколько черных и несколько белых каждая. Из них извлекаются n (n ≥ 3) шаров с возвращением. Найти число n и содержимое обеих урн, если вероятность того, что все белые шары извлечены из первой урны, равна вероятности того, что из второй извлечены либо все белые, либо все черные шары. В качестве следующей задачи король предлагает мудрецу выбрать наибольшее из 100 чисел при тех же условиях, что и раньше, но на этот раз число на билете выбирается наудачу среди чисел от 0 до 1 (равномерно распределенные случайные числа) Какой должна быть стратегия мудреца?
При каком минимальном числе людей в компании вероятность того, что хотя бы два из них родились в один и тот же день, не меньше 1/2? (Годы рождения могут и не совпадать.) В пирамиде 10 винтовок, из которых 4 пристреляны, а 6 – нет. Вероятность попадания при стрельбе из пристрелянной винтовки – 0.95; для винтовки без пристрелки эта вероятность равна – 0.8. Во время учебной тревоги солдат наудачу берет винтовку из пирамиды и стреляет из нее дважды. Найти вероятности того, что : а) солдат оба раза поразил мишень; б) солдат стрелял из пристрелянной винтовки, если он поразил мишень дважды.
После выборов, в которых участвуют два кандидата, A и B, за них поступило a и b (a>b) бюллетеней соответственно, скажем, 3 и 2. Если подсчет голосов производится последовательным извлечением бюллетеней из урны, то какова вероятность того, что хотя бы один раз число вынутых бюллетеней, поданных за A и B, было одинаково? Чеканщик кладет m фальшивых монет в ящик, содержащий всего n монет. Король, подозревая чеканщика, извлекает случайным образом по одной монете из каждого из n ящиков и проверяет их. Какова вероятность того, что в выборке из n монет ровно r фальшивых?
В первой корзине 7 яблок и 9 груш, во второй – 2 яблока и 4 груши, в третьей – 11 яблок и 4 груши. Из наугад выбранной корзины взяли один фрукт. Найти вероятность того, что это груша. Какова вероятность того, что выбранная таким образом груша была в третьей корзине? Из урны, содержащей 5 белых и 4 черных шара, наугад извлекают три. Определить вероятность того, что среди них: ровно один черный; хотя бы один из них черный; все белые.