Артикул: 1140667

Раздел:Технические дисциплины (86809 шт.) >
  Математика (32435 шт.) >
  Теория вероятности (4198 шт.)

Название или условие:
(а) Если стержень ломается случайным образом на две части, то какова средняя длина меньшего куска?
(б) Каково среднее отношение длины короткого куска к длине длинного куска?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача 1.3
Случайным образом n одинаковых шаров размещаются в m ящиках. Какова вероятность того, что ровно r ящиков останутся пустыми?

В пирамиде 10 винтовок, из которых 4 пристреляны, а 6 – нет. Вероятность попадания при стрельбе из пристрелянной винтовки – 0.95; для винтовки без пристрелки эта вероятность равна – 0.8. Во время учебной тревоги солдат наудачу берет винтовку из пирамиды и стреляет из нее дважды. Найти вероятности того, что : а) солдат оба раза поразил мишень; б) солдат стрелял из пристрелянной винтовки, если он поразил мишень дважды.
Какова вероятность того, что корни квадратного уравнения x2+2bx+c=0 вещественны? У игрока M имеется 1 доллар, а у игрока N - 2 доллара. После каждого тура один из игроков выигрывает у другого один доллар. Игрок M более искусен, чем N, так что он выигрывает 23 игр. Игроки состязаются до банкротства одного из них. Какова вероятность выигрыша для M?
Игроки A и B в орлянку играют N раз. После первого бросания каковы шансы на то, что в течение всей игры их выигрыши не совпадут? В качестве следующей задачи король предлагает мудрецу выбрать наибольшее из 100 чисел при тех же условиях, что и раньше, но на этот раз число на билете выбирается наудачу среди чисел от 0 до 1 (равномерно распределенные случайные числа) Какой должна быть стратегия мудреца?
Игра состоит из последовательности партий, в каждой из которых вы или ваш партнер выигрывает очко, вы - с вероятностью p (меньшей, чем 12), он - с вероятностью 1−p. Число игр должно быть четным: 2, 4, 6 и т. д. Для выигрыша надо набрать больше половины очков. Предположим, что вам известно, что p=0,45, и в случае выигрыша вы получаете приз. Если число партий в игре выбирается заранее, то каков будет ваш выбор? Споры, несущиеся по воздуху, производят маленькие колонии плесени на пластинках желатина в лаборатории. В среднем на пластинке имеется 3 колонии. Какая доля пластинок имеет ровно 3 колонии? Если среднее число колоний равно некоторому достаточно большому целому числу m, то какая доля пластинок содержит ровно m колоний?
Прямоугольная полоса размером 1×n(n ≥ 4) составлена из единичных полей, занумерованных числами 1,2,⋯,n. На полях с номерами n–2,n−1,n стоит по одной фишке. Двое играют в следующую игру: каждый игрок своим ходом может перенести любую фишку на любое свободное поле с меньшим номером. Проигрывает тот, кто не может сделать очередного хода. Доказать, что начинающий может ходить так, чтобы наверняка выиграть. Предположим, что на плоскость, разграфленную на единичные клетки вертикальными и горизонтальными прямыми, наудачу брошена игла длиной 2l (меньшей, чем 1) Каково среднее число прямых, пересекаемых иглою? (Мы считаем, что сторона клетки 2a равна 1, так как можно измерять длину иглы в единицах длины клеток)