Артикул: 1140668

Раздел:Технические дисциплины (86809 шт.) >
  Математика (32435 шт.) >
  Теория вероятности (4198 шт.)

Название или условие:
Стержень ломается случайным образом на три части. Найти средние длины короткого, среднего и длинного кусков.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача 1.3
Случайным образом n одинаковых шаров размещаются в m ящиках. Какова вероятность того, что ровно r ящиков останутся пустыми?

Соотношение между разными задачами о парных днях рождения. Пусть Pr обозначает вероятность того, что по крайней мере два человека из компании в r человек имеют один и тот же день рождения. Каково должно быть n в индивидуальной задаче о парных днях рождения для того, чтобы вероятность успеха приблизительно равнялась бы Pr?
Какова вероятность того, что корни квадратного уравнения x2+2bx+c=0 вещественны? Инструмент без систематической ошибки для измерения длин делает случайные ошибки, распределение которых имеет штандарт σ. Вам разрешается произвести всего два измерения для оценки длины двух цилиндрических стержней, один из которых явно длиннее другого. Можете ли вы придумать что-либо лучшее, чем сделать по одному измерению каждого стержня? (Для инструмента без систематической ошибки среднее наблюдений равно истинному значению.)
A, B и C сходятся для трехсторонней дуэли. Известно, что для A вероятность попасть в цель равна 0,3, для С - 0,5, а B стреляет без промаха. Дуэлянты могут стрелять в любого противника по выбору. Первым стреляет A, затем B, дальше C и т. д. в циклическом порядке (раненый выбывает из дуэли), пока лишь один человек не останется невредимым. Какой должна быть стратегия A? С. Пепайс предложил Исааку Ньютону следующую задачу: Какое из событий более вероятно: (а) появление по крайней мере одной шестерки при подбрасывании 6 костей, (б) появление хотя бы двух шестерок при подбрасывании 12 костей и (в) появление не менее трех шестерок при бросании 18 костей? Источник: https://earthz.ru/solves/Zadacha-po-matematike-3872
В поисках парных дней рождения. Вы задались целью найти человека, день рождения которого совпадает с вашим. Сколько незнакомцев вам придется опросить, чтобы вероятность встречи такого человека была бы не меньше, чем 1/2? Разъезжающий булочник продает в среднем 20 кексов за одну поездку. Какова вероятность того, что он продаст четное число кексов? (Предполагается, что число покупок подчиняется закону Пуассона.)
Предположим, что на плоскость, разграфленную на единичные клетки вертикальными и горизонтальными прямыми, наудачу брошена игла длиной 2l (меньшей, чем 1) Каково среднее число прямых, пересекаемых иглою? (Мы считаем, что сторона клетки 2a равна 1, так как можно измерять длину иглы в единицах длины клеток) При каком минимальном числе людей в компании вероятность того, что хотя бы два из них родились в один и тот же день, не меньше 1/2? (Годы рождения могут и не совпадать.)