Артикул: 1140675

Раздел:Технические дисциплины (86808 шт.) >
  Математика (32435 шт.) >
  Теория вероятности (4198 шт.)

Название или условие:
Предположим, что на плоскость, разграфленную на единичные клетки вертикальными и горизонтальными прямыми, наудачу брошена игла длиной 2l (меньшей, чем 1) Каково среднее число прямых, пересекаемых иглою? (Мы считаем, что сторона клетки 2a равна 1, так как можно измерять длину иглы в единицах длины клеток)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Человеку, находящемуся в Лас-Вегасе, нужны 40 долларов, в то время как он располагает лишь 20 долларами. Он не хочет телеграфировать жене о переводе денег и решает играть в рулетку (отрицательно относясь к этой игре) согласно одной из двух стратегий: либо поставить все свои 20 долларов на «чет» и закончить игру сразу же, если он выиграет или проиграет, либо ставить на «чет» по одному доллару до тех пор, пока он не выиграет или не проиграет 20 долларов. Какая из этих двух стратегий лучше? Частица выходит из начала координат 0 в трехмерном пространстве. Представим себе точку 0 как центр куба со стороною длины 2. За один шаг частица попадает в один из восьми углов куба. Поэтому при каждом шаге частица с равной вероятностью сдвигается на единицу длины вверх или вниз, на восток или на запад, на север или на юг. Какова доля частиц, возвращающихся в начало, при неограниченном времени блуждания?
В поисках парных дней рождения. Вы задались целью найти человека, день рождения которого совпадает с вашим. Сколько незнакомцев вам придется опросить, чтобы вероятность встречи такого человека была бы не меньше, чем 1/2? В пирамиде 10 винтовок, из которых 4 пристреляны, а 6 – нет. Вероятность попадания при стрельбе из пристрелянной винтовки – 0.95; для винтовки без пристрелки эта вероятность равна – 0.8. Во время учебной тревоги солдат наудачу берет винтовку из пирамиды и стреляет из нее дважды. Найти вероятности того, что : а) солдат оба раза поразил мишень; б) солдат стрелял из пристрелянной винтовки, если он поразил мишень дважды.
Дуэли в городе Осторожности редко кончаются печальным исходом. Дело в том, что каждый дуэлянт прибывает на место встречи в случайный момент времени между 5 и 6 часами утра и, прождав соперника 5 минут, удаляется. В случае же прибытия последнего в эти пять минут дуэль состоится. Какая часть дуэлей действительно заканчивается поединком?Споры, несущиеся по воздуху, производят маленькие колонии плесени на пластинках желатина в лаборатории. В среднем на пластинке имеется 3 колонии. Какая доля пластинок имеет ровно 3 колонии? Если среднее число колоний равно некоторому достаточно большому целому числу m, то какая доля пластинок содержит ровно m колоний?
Из урны, содержащей 5 белых и 4 черных шара, наугад извлекают три. Определить вероятность того, что среди них: ровно один черный; хотя бы один из них черный; все белые.Изделие подвергается четырем видам испытаний. Вероятность того, что изделие выдержит первое испытание, равна 0,9; второе – 0,6; третье 0,8; четвертое – 0,7. Найти вероятность того, что изделие выдержит более двух испытаний; хотя бы одно испытание.
Чеканщик кладет m фальшивых монет в ящик, содержащий всего n монет. Король, подозревая чеканщика, извлекает случайным образом по одной монете из каждого из n ящиков и проверяет их. Какова вероятность того, что в выборке из n монет ровно r фальшивых? После выборов, в которых участвуют два кандидата, A и B, за них поступило a и b (a>b) бюллетеней соответственно, скажем, 3 и 2. Если подсчет голосов производится последовательным извлечением бюллетеней из урны, то какова вероятность того, что хотя бы один раз число вынутых бюллетеней, поданных за A и B, было одинаково?