Артикул: 1140675

Раздел:Технические дисциплины (86808 шт.) >
  Математика (32435 шт.) >
  Теория вероятности (4198 шт.)

Название или условие:
Предположим, что на плоскость, разграфленную на единичные клетки вертикальными и горизонтальными прямыми, наудачу брошена игла длиной 2l (меньшей, чем 1) Каково среднее число прямых, пересекаемых иглою? (Мы считаем, что сторона клетки 2a равна 1, так как можно измерять длину иглы в единицах длины клеток)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Какова вероятность того, что корни квадратного уравнения x2+2bx+c=0 вещественны? Две урны содержат одно и то же количество шаров, несколько черных и несколько белых каждая. Из них извлекаются n (n ≥ 3) шаров с возвращением. Найти число n и содержимое обеих урн, если вероятность того, что все белые шары извлечены из первой урны, равна вероятности того, что из второй извлечены либо все белые, либо все черные шары.
Стержень ломается случайным образом на три части. Найти средние длины короткого, среднего и длинного кусков. При каком минимальном числе людей в компании вероятность того, что хотя бы два из них родились в один и тот же день, не меньше 1/2? (Годы рождения могут и не совпадать.)
Из урны, содержащей 5 белых и 4 черных шара, наугад извлекают три. Определить вероятность того, что среди них: ровно один черный; хотя бы один из них черный; все белые.В первой корзине 7 яблок и 9 груш, во второй – 2 яблока и 4 груши, в третьей – 11 яблок и 4 груши. Из наугад выбранной корзины взяли один фрукт. Найти вероятность того, что это груша. Какова вероятность того, что выбранная таким образом груша была в третьей корзине?
Разъезжающий булочник продает в среднем 20 кексов за одну поездку. Какова вероятность того, что он продаст четное число кексов? (Предполагается, что число покупок подчиняется закону Пуассона.) Задача 1.3
Случайным образом n одинаковых шаров размещаются в m ящиках. Какова вероятность того, что ровно r ящиков останутся пустыми?

Игра состоит из последовательности партий, в каждой из которых вы или ваш партнер выигрывает очко, вы - с вероятностью p (меньшей, чем 12), он - с вероятностью 1−p. Число игр должно быть четным: 2, 4, 6 и т. д. Для выигрыша надо набрать больше половины очков. Предположим, что вам известно, что p=0,45, и в случае выигрыша вы получаете приз. Если число партий в игре выбирается заранее, то каков будет ваш выбор? В качестве следующей задачи король предлагает мудрецу выбрать наибольшее из 100 чисел при тех же условиях, что и раньше, но на этот раз число на билете выбирается наудачу среди чисел от 0 до 1 (равномерно распределенные случайные числа) Какой должна быть стратегия мудреца?