Артикул: 1116395

Раздел:Технические дисциплины (74175 шт.) >
  Математика (27180 шт.) >
  Математический анализ (18511 шт.) >
  Функции нескольких переменных (96 шт.)

Название или условие:
Для функции z=ln⁡(x2+5y2) в точке A(-5;1) найти градиент и производную по направлению a =i - (5j)

Описание:
Подробное решение

Изображение предварительного просмотра:

Для функции z=ln⁡(x<sup>2</sup>+5y<sup>2</sup>) в точке A(-5;1) найти градиент и производную по направлению a =i - (5j)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти величину и направление наибольшего изменения функции u(M)=u(x, y, z) в точке M0(x0, y0, z0)
u(M) = x2y + z, M0(1, −2, 3)

Найти наибольшее и наименьшее значения функций в указанных областях
z = xy2 + 2x + 1 в треугольнике x ≥ -2, y -2, x + y ≤ 5ё

Найти производную по направлению
f=ln⁡(1+x2+5y2+z2), l={2,-2,1}, M(5,1,2)

Заданы функции: z = f(x,y), z = φ(x;y), z = g(x;y). Требуется:
a) df/dx; d2g/dx2; df/dy; d2f/dy2;
б) найти dφ/dx; dφ/dy
в) показать, что d2g/dxdy = d2g/dydx
z = f(x;y) = 5 - 2x2 + x3y4 - ln(xy)
z = φ(x;y) = x2cos(xy)
z = g(x;y) = ex3y

Найти параметры a, b, c ∈ R при которых (24, -144, -1) - точка локального экстремума функции f:R3→R, f(x, y, z)=x3+ay2+z2+bxy+cz, и для полученных значений, изучить характер этой точки.
Вычислить минимум функции:
z = x2 + y2 + 16x + 16y - 2

Найти локальные экстремумы функции двух переменных
z = -8x3 + 6xy2 + y3 + 9y2

Задание 1. Дана функция z=f(x,y). Проверить, удовлетворяет ли она данному уравнению.
Вариант 4
z=ln(x2+y2+2y+1)

Даны функция z = f(x,y), точка A(x0, y0) и вектор a(a1, a2) . Найти: 1) fradz в точке A; 2) производную в точке A по направлению вектора a
z = 5x2 + 6xy, A(2,1), a = i + 2i

Написать формулу линеаризации и уравнение касательной плоскости к графику функции в точке