Артикул: 1151096

Раздел:Технические дисциплины (96319 шт.) >
  Математика (32667 шт.) >
  Математический анализ (20872 шт.) >
  Функции нескольких переменных (108 шт.)

Название или условие:
Найдите наибольшее и наименьшее значение функции при заданном условии
z=3x+2y; x2+2y2-3x-2y=0

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Найдите наибольшее и наименьшее значение функции при заданном условии<br />z=3x+2y; x<sup>2</sup>+2y<sup>2</sup>-3x-2y=0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти величину и направление наибольшего изменения функции u(M)=u(x, y, z) в точке M0(x0, y0, z0)
u(M) = x2y + z, M0(1, −2, 3)

Найти экстремум f=(256/x)+(x2/y)+(y2/z)+z2
Дана функция u(M) = u(x, y, z) и точки M1, M2. Вычислить: 1) производную этой функции в точке M1 по направлению вектора M1M2; 2) grad u(M1)
u(M) = 3x2y2z2, M1(–2, 1, 1), M2(3, –1, 0)

Вычислить минимум функции:
z = x2 + y2 + 16x + 16y - 2

Найти градиент функции (рис) точке M0(1,1,1) и его модуль.
Задание 2. Найти наибольшее и наименьшее значения для каждой из заданных функций в указанной замкнутой области D.
Вариант 4
z=3x2-x+3y2-y+1

Даны функция z = f(x,y), точка A(x0, y0) и вектор a(a1, a2) . Найти: 1) fradz в точке A; 2) производную в точке A по направлению вектора a
z = 5x2 + 6xy, A(2,1), a = i + 2i

Найти локальные экстремумы функции двух переменных
z = -8x3 + 6xy2 + y3 + 9y2

Найти наибольшее и наименьшее значения функций в указанных областях
z = xy2 + 2x + 1 в треугольнике x ≥ -2, y -2, x + y ≤ 5ё

Найти глобальные экстремумы функции y3 + 5xy - 4x + 6y + 4 в заданной замкнутой области D: x - y = 4, x = 0, y = 0