Артикул: 1151096

Раздел:Технические дисциплины (96319 шт.) >
  Математика (32667 шт.) >
  Математический анализ (20872 шт.) >
  Функции нескольких переменных (108 шт.)

Название или условие:
Найдите наибольшее и наименьшее значение функции при заданном условии
z=3x+2y; x2+2y2-3x-2y=0

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Найдите наибольшее и наименьшее значение функции при заданном условии<br />z=3x+2y; x<sup>2</sup>+2y<sup>2</sup>-3x-2y=0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти параметры a, b, c ∈ R при которых функция f(x, y)=x3+3xy2+ax+by+c, имеет локальный максимум, равный 28 в (-2, -1).
Найти наибольшее и наименьшее значения функций в указанных областях
z = xy2 + 2x + 1 в треугольнике x ≥ -2, y -2, x + y ≤ 5ё

Исследовать на экстремумы функцию. Изобразить на плоскости линию уровня z=0, области знакопостоянства функции и ее стационарные точки z=2x2y+3xy2-18xy
Найти параметры a, b, c ∈ R при которых (24, -144, -1) - точка локального экстремума функции f:R3→R, f(x, y, z)=x3+ay2+z2+bxy+cz, и для полученных значений, изучить характер этой точки.
Найти область определения D и область значений Е функции z = ln(y - x2 + 2x)
Найти градиент функции z = f(x,y) в точке M(1;1)
z = x/(x2 + y2)

Задание 2. Найти наибольшее и наименьшее значения для каждой из заданных функций в указанной замкнутой области D.
Вариант 4
z=3x2-x+3y2-y+1

Даны функция z = f(x,y), точка A(x0, y0) и вектор a(a1, a2) . Найти: 1) fradz в точке A; 2) производную в точке A по направлению вектора a
z = 5x2 + 6xy, A(2,1), a = i + 2i

Найти полную производную функции u = x + y2 + z3, где y = sin(x), z = cos(x)
Найти условный экстремум z = x2 + 12xy + 2y2, если 4x2 + y2 = 25