Артикул: 1120268

Раздел:Технические дисциплины (77986 шт.) >
  Математика (29985 шт.) >
  Математический анализ (20330 шт.) >
  Функции нескольких переменных (101 шт.)

Название или условие:
Найти локальные экстремумы функции двух переменных
z = -8x3 + 6xy2 + y3 + 9y2

Изображение предварительного просмотра:

Найти локальные экстремумы функции двух переменных <br /> z = -8x<sup>3</sup> + 6xy<sup>2</sup> + y<sup>3</sup> + 9y<sup>2</sup>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Для функции z=ln⁡(x2+5y2) в точке A(-5;1) найти градиент и производную по направлению a =i - (5j)
Найти величину и направление наибольшего изменения функции u(M)=u(x, y, z) в точке M0(x0, y0, z0)
u(M) = x2y + z, M0(1, −2, 3)

Найти полную производную функции u = x + y2 + z3, где y = sin(x), z = cos(x)
Найти экстремум функции u=x3+12xy+y2+z2+2z
Вычислить минимум функции:
z = x2 + y2 + 16x + 16y - 2

Задание 3. Исследовать на экстремум следующие функции.
Вариант 4
z=x3+xy2+6xy

Исследовать на экстремумы функцию. Изобразить на плоскости линию уровня z=0, области знакопостоянства функции и ее стационарные точки z=2x2y+3xy2-18xy
Найти параметры a, b, c ∈ R при которых функция f(x, y)=x3+3xy2+ax+by+c, имеет локальный максимум, равный 28 в (-2, -1).
Найти область определения D и область значений Е функции z = ln(y - x2 + 2x)
Найти градиент функции u = x + ln(z2 + y2) в точке M(2,1,1)