Артикул: 1111172

Раздел:Технические дисциплины (70756 шт.) >
  Математика (25180 шт.) >
  Математический анализ (17505 шт.) >
  Функции нескольких переменных (85 шт.)

Название или условие:
Найти экстремум z=e2x(x+y2+2y)

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Найти экстремум  z=e<sup>2x</sup>(x+y<sup>2</sup>+2y)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Вычислить минимум функции:
z = x2 + y2 + 16x + 16y - 2

Задание 3. Исследовать на экстремум следующие функции.
Вариант 4
z=x3+xy2+6xy

Найти параметры a, b, c ∈ R при которых функция f(x, y)=x3+3xy2+ax+by+c, имеет локальный максимум, равный 28 в (-2, -1).
Дана функция u(M) = u(x, y, z) и точки M1, M2. Вычислить: 1) производную этой функции в точке M1 по направлению вектора M1M2; 2) grad u(M1)
u(M) = 3x2y2z2, M1(–2, 1, 1), M2(3, –1, 0)

Найти условный экстремум z = x2 + 12xy + 2y2, если 4x2 + y2 = 25
Найти глобальные экстремумы функции y3 + 5xy - 4x + 6y + 4 в заданной замкнутой области D: x - y = 4, x = 0, y = 0
Найти производную по направлению
f=ln⁡(1+x2+5y2+z2), l={2,-2,1}, M(5,1,2)

Найти локальные экстремумы функции двух переменных
z = -8x3 + 6xy2 + y3 + 9y2

Найти gradu(M) и |gradu(M)| в точке М(1;1;0) для функции u = √(xy) - √(4 - z2)
Найти наибольшее и наименьшее значения функций в указанных областях
z = xy2 + 2x + 1 в треугольнике x ≥ -2, y -2, x + y ≤ 5ё