Артикул: 1149821

Раздел:Технические дисциплины (95201 шт.) >
  Математика (32650 шт.) >
  Математический анализ (20860 шт.) >
  Функции нескольких переменных (105 шт.)

Название или условие:
Задание 3. Исследовать на экстремум следующие функции.
Вариант 4
z=x3+xy2+6xy

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задание 3</b>. Исследовать на экстремум следующие функции. <br /><b>Вариант 4</b><br />z=x<sup>3</sup>+xy<sup>2</sup>+6xy

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти условный экстремум z = x2 + 12xy + 2y2, если 4x2 + y2 = 25
Найти градиент функции (рис) точке M0(1,1,1) и его модуль.
Найти глобальные экстремумы функции y3 + 5xy - 4x + 6y + 4 в заданной замкнутой области D: x - y = 4, x = 0, y = 0
Найти gradu(M) и |gradu(M)| в точке М(1;1;0) для функции u = √(xy) - √(4 - z2)
Найдите наибольшее и наименьшее значение функции при заданном условии
z=3x+2y; x2+2y2-3x-2y=0

Найти параметры a, b ∈ R при которых (1,2) - точка локального экстремума функции f(x, y)=3xy2+x3+ax+by.
Найти наибольшее и наименьшее значения функций в указанных областях
z = xy2 + 2x + 1 в треугольнике x ≥ -2, y -2, x + y ≤ 5ё

Найти градиент функции z = f(x,y) в точке M(1;1)
z = x/(x2 + y2)

Найти градиент функции u = x + ln(z2 + y2) в точке M(2,1,1)
Исследовать на экстремумы функцию. Изобразить на плоскости линию уровня z=0, области знакопостоянства функции и ее стационарные точки z=2x2y+3xy2-18xy