Артикул: 1149821

Раздел:Технические дисциплины (95201 шт.) >
  Математика (32650 шт.) >
  Математический анализ (20860 шт.) >
  Функции нескольких переменных (105 шт.)

Название или условие:
Задание 3. Исследовать на экстремум следующие функции.
Вариант 4
z=x3+xy2+6xy

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задание 3</b>. Исследовать на экстремум следующие функции. <br /><b>Вариант 4</b><br />z=x<sup>3</sup>+xy<sup>2</sup>+6xy

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти параметры a, b ∈ R при которых (1,2) - точка локального экстремума функции f(x, y)=3xy2+x3+ax+by.
Для функции z=ln⁡(x2+5y2) в точке A(-5;1) найти градиент и производную по направлению a =i - (5j)
Найти полную производную функции u = x + y2 + z3, где y = sin(x), z = cos(x)
Найти производную по направлению
f=ln⁡(1+x2+5y2+z2), l={2,-2,1}, M(5,1,2)

Найти область определения D и область значений Е функции z = ln(y - x2 + 2x)
Найдите наибольшее и наименьшее значение функции при заданном условии
z=3x+2y; x2+2y2-3x-2y=0

Заданы функции: z = f(x,y), z = φ(x;y), z = g(x;y). Требуется:
a) df/dx; d2g/dx2; df/dy; d2f/dy2;
б) найти dφ/dx; dφ/dy
в) показать, что d2g/dxdy = d2g/dydx
z = f(x;y) = 5 - 2x2 + x3y4 - ln(xy)
z = φ(x;y) = x2cos(xy)
z = g(x;y) = ex3y

Исследовать на экстремумы функцию. Изобразить на плоскости линию уровня z=0, области знакопостоянства функции и ее стационарные точки z=2x2y+3xy2-18xy
Даны функция z = f(x,y), точка A(x0, y0) и вектор a(a1, a2) . Найти: 1) fradz в точке A; 2) производную в точке A по направлению вектора a
z = 5x2 + 6xy, A(2,1), a = i + 2i

Найти локальные экстремумы функции двух переменных
z = -8x3 + 6xy2 + y3 + 9y2