Артикул: 1115161

Раздел:Технические дисциплины (73078 шт.) >
  Математика (26224 шт.) >
  Математический анализ (18155 шт.) >
  Функции нескольких переменных (93 шт.)

Название или условие:
Найти параметры a, b, c ∈ R при которых (24, -144, -1) - точка локального экстремума функции f:R3→R, f(x, y, z)=x3+ay2+z2+bxy+cz, и для полученных значений, изучить характер этой точки.

Описание:
Подробное решение в WORD - 3 страницы

Изображение предварительного просмотра:

Найти параметры a, b, c ∈ R при которых (24, -144, -1) - точка локального экстремума функции f:R<sup>3</sup>→R, f(x, y, z)=x<sup>3</sup>+ay<sup>2</sup>+z<sup>2</sup>+bxy+cz, и для полученных значений, изучить характер этой точки.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Исследовать на экстремумы функцию. Изобразить на плоскости линию уровня z=0, области знакопостоянства функции и ее стационарные точки z=2x2y+3xy2-18xy
Найти экстремум функции u=x3+12xy+y2+z2+2z
Дана функция u(M) = u(x, y, z) и точки M1, M2. Вычислить: 1) производную этой функции в точке M1 по направлению вектора M1M2; 2) grad u(M1)
u(M) = 3x2y2z2, M1(–2, 1, 1), M2(3, –1, 0)

Найти условный экстремум z = x2 + 12xy + 2y2, если 4x2 + y2 = 25
Для функции z=ln⁡(x2+5y2) в точке A(-5;1) найти градиент и производную по направлению a =i - (5j)
Даны функция z = f(x,y), точка A(x0, y0) и вектор a(a1, a2) . Найти: 1) fradz в точке A; 2) производную в точке A по направлению вектора a
z = 5x2 + 6xy, A(2,1), a = i + 2i

Вычислить минимум функции:
z = x2 + y2 + 16x + 16y - 2

Написать формулу линеаризации и уравнение касательной плоскости к графику функции в точке
Найти экстремум f=(256/x)+(x2/y)+(y2/z)+z2
Найти производную по направлению
f=ln⁡(1+x2+5y2+z2), l={2,-2,1}, M(5,1,2)