Артикул: 1151093

Раздел:Технические дисциплины (96316 шт.) >
  Математика (32664 шт.) >
  Математический анализ (20869 шт.) >
  Функции нескольких переменных (106 шт.)

Название или условие:
Написать формулу линеаризации и уравнение касательной плоскости к графику функции в точке

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Написать формулу линеаризации и уравнение касательной плоскости к графику функции в точке

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

1) Составить уравнение линии уровня f(x,y) = C и построить ее график
2) вычислить производную dz/da в точке A по направлению вектора a = AB
3) найти направление и величину скорости быстрейшего возрастания в точке А

Найти градиент функции u = x + ln(z2 + y2) в точке M(2,1,1)
Задание 3. Исследовать на экстремум следующие функции.
Вариант 4
z=x3+xy2+6xy

Даны функция z = f(x,y), точка A(x0, y0) и вектор a(a1, a2) . Найти: 1) fradz в точке A; 2) производную в точке A по направлению вектора a
z = 5x2 + 6xy, A(2,1), a = i + 2i

Найти полную производную функции u = x + y2 + z3, где y = sin(x), z = cos(x)
Вычислить минимум функции:
z = x2 + y2 + 16x + 16y - 2

Найти градиент функции (рис) точке M0(1,1,1) и его модуль.
Найти gradu(M) и |gradu(M)| в точке М(1;1;0) для функции u = √(xy) - √(4 - z2)
Найти величину и направление наибольшего изменения функции u(M)=u(x, y, z) в точке M0(x0, y0, z0)
u(M) = x2y + z, M0(1, −2, 3)

Дана функция u(M) = u(x, y, z) и точки M1, M2. Вычислить: 1) производную этой функции в точке M1 по направлению вектора M1M2; 2) grad u(M1)
u(M) = 3x2y2z2, M1(–2, 1, 1), M2(3, –1, 0)