Артикул: 1113292

Раздел:Технические дисциплины (71923 шт.) >
  Математика (25566 шт.) >
  Математический анализ (17740 шт.) >
  Функции нескольких переменных (91 шт.)

Название или условие:
Найти наибольшее и наименьшее значения функций в указанных областях
z = xy2 + 2x + 1 в треугольнике x ≥ -2, y -2, x + y ≤ 5ё

Изображение предварительного просмотра:

Найти наибольшее и  наименьшее значения функций в указанных областях <br /> z = xy<sup>2</sup> + 2x + 1 в треугольнике x ≥ -2, y  -2, x + y ≤ 5ё

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти величину и направление наибольшего изменения функции u(M)=u(x, y, z) в точке M0(x0, y0, z0)
u(M) = x2y + z, M0(1, −2, 3)

Задание 3. Исследовать на экстремум следующие функции.
Вариант 4
z=x3+xy2+6xy

Вычислить минимум функции:
z = x2 + y2 + 16x + 16y - 2

Для функции z=ln⁡(x2+5y2) в точке A(-5;1) найти градиент и производную по направлению a =i - (5j)
Найти полную производную функции u = x + y2 + z3, где y = sin(x), z = cos(x)
Задание 1. Дана функция z=f(x,y). Проверить, удовлетворяет ли она данному уравнению.
Вариант 4
z=ln(x2+y2+2y+1)

Найти экстремум z=e2x(x+y2+2y)
Найти градиент функции (рис) точке M0(1,1,1) и его модуль.
Найти экстремум f=(256/x)+(x2/y)+(y2/z)+z2
Найти величину и направление наибольшего изменения функции u(M) = u(x,y,z) в точке M0(x0,y0,z0)
u(M) = xy2z2, M0 (-2,1,1)