Артикул: 1114538

Раздел:Технические дисциплины (72536 шт.) >
  Математика (25881 шт.) >
  Математический анализ (17953 шт.) >
  Функции нескольких переменных (92 шт.)

Название или условие:
Найти градиент функции u = x + ln(z2 + y2) в точке M(2,1,1)

Изображение предварительного просмотра:

Найти градиент функции u = x + ln(z<sup>2</sup> + y<sup>2</sup>) в точке M(2,1,1)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найдите наибольшее и наименьшее значение функции при заданном условии
z=3x+2y; x2+2y2-3x-2y=0

Найти экстремум z=e2x(x+y2+2y)
Найти производную по направлению
f=ln⁡(1+x2+5y2+z2), l={2,-2,1}, M(5,1,2)

Найти экстремум функции u=x3+12xy+y2+z2+2z
Найти локальные экстремумы функции двух переменных
z = -8x3 + 6xy2 + y3 + 9y2

Задание 2. Найти наибольшее и наименьшее значения для каждой из заданных функций в указанной замкнутой области D.
Вариант 4
z=3x2-x+3y2-y+1

Заданы функции: z = f(x,y), z = φ(x;y), z = g(x;y). Требуется:
a) df/dx; d2g/dx2; df/dy; d2f/dy2;
б) найти dφ/dx; dφ/dy
в) показать, что d2g/dxdy = d2g/dydx
z = f(x;y) = 5 - 2x2 + x3y4 - ln(xy)
z = φ(x;y) = x2cos(xy)
z = g(x;y) = ex3y

Найти условный экстремум z = x2 + 12xy + 2y2, если 4x2 + y2 = 25
Задание 3. Исследовать на экстремум следующие функции.
Вариант 4
z=x3+xy2+6xy

Найти наибольшее и наименьшее значения функций в указанных областях
z = xy2 + 2x + 1 в треугольнике x ≥ -2, y -2, x + y ≤ 5ё