Артикул: 1114538

Раздел:Технические дисциплины (72536 шт.) >
  Математика (25881 шт.) >
  Математический анализ (17953 шт.) >
  Функции нескольких переменных (92 шт.)

Название или условие:
Найти градиент функции u = x + ln(z2 + y2) в точке M(2,1,1)

Изображение предварительного просмотра:

Найти градиент функции u = x + ln(z<sup>2</sup> + y<sup>2</sup>) в точке M(2,1,1)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти условный экстремум z = x2 + 12xy + 2y2, если 4x2 + y2 = 25
Найти величину и направление наибольшего изменения функции u(M) = u(x,y,z) в точке M0(x0,y0,z0)
u(M) = xy2z2, M0 (-2,1,1)

Найти gradu(M) и |gradu(M)| в точке М(1;1;0) для функции u = √(xy) - √(4 - z2)
Найти глобальные экстремумы функции y3 + 5xy - 4x + 6y + 4 в заданной замкнутой области D: x - y = 4, x = 0, y = 0
Задание 2. Найти наибольшее и наименьшее значения для каждой из заданных функций в указанной замкнутой области D.
Вариант 4
z=3x2-x+3y2-y+1

Найти экстремум функции u=x3+12xy+y2+z2+2z
Задание 1. Дана функция z=f(x,y). Проверить, удовлетворяет ли она данному уравнению.
Вариант 4
z=ln(x2+y2+2y+1)

Найти локальные экстремумы функции двух переменных
z = -8x3 + 6xy2 + y3 + 9y2

Найти область определения D и область значений Е функции z = ln(y - x2 + 2x)
Найти экстремум f=(256/x)+(x2/y)+(y2/z)+z2